|   | 
Details
   web
Records
Author Verevkin, A.; Zhang, J.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Gol'tsman, G. N.; Semenov, A.
Title Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range Type Journal Article
Year 2002 Publication Appl. Phys. Lett. Abbreviated Journal
Volume 80 Issue 25 Pages 4687-4689
Keywords (down) NbN SSPD, SNSPD, QE
Abstract We report our studies on spectral sensitivity of meander-type, superconducting NbN thin-film single-photon detectors (SPDs), characterized by GHz counting rates of visible and near-infrared photons and negligible dark counts. Our SPDs exhibit experimentally determined quantum efficiencies ranging from ∼0.2% at the 1.55 μm wavelength to ∼70% at 0.4 μm. Spectral dependences of the detection efficiency (DE) at the 0.4 to 3.0-μm-wavelength range are presented. The exponential character of the DE dependence on wavelength, as well as its dependence versus bias current, is qualitatively explained in terms of superconducting fluctuations in our ultrathin, submicron-width superconducting stripes. The DE values of large-active-area NbN SPDs in the visible range are high enough for modern quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 331
Permanent link to this record
 

 
Author Verevkin, A. A.; Pearlman, A.; Slysz, W.; Zhang, J.; Sobolewski, R.; Chulkova, G.; Okunev, O.; Kouminov, P.; Drakinskij, V.; Smirnov, K.; Kaurova, N.; Voronov, B.; Gol’tsman, G.; Currie, M.
Title Ultrafast superconducting single-photon detectors for infrared wavelength quantum communications Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5105 Issue Pages 160-170
Keywords (down) NbN SSPD, SNSPD, applications, single-photon detector, quantum cryptography, quantum communications, superconducting devices
Abstract We have developed a new class of superconducting single-photon detectors (SSPDs) for ultrafast counting of infrared (IR) photons for secure quantum communications. The devices are operated on the quantum detection mechanism, based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The detectors are fabricated from 3.5-nm-thick NbN films and they operate at 4.2 K inside a closed-cycle refrigerator or liquid helium cryostat. Various continuous and pulsed laser sources have been used in our experiments, enabling us to determine the detector experimental quantum efficiency (QE) in the photon-counting mode, response time, time jitter, and dark counts. Our 3.5-nm-thick SSPDs reached QE above 15% for visible light photons and 5% at 1.3 – 1.5 μm infrared range. The measured real-time counting rate was above 2 GHz and was limited by the read-out electronics (intrinsic response time is <30 ps). The measured jitter was <18 ps, and the dark counting rate was <0.01 per second. The measured noise equivalent power (NEP) is 2 x 10-18 W/Hz1/2 at λ = 1.3 μm. In near-infrared range, in terms of the counting rate, jitter, dark counts, and overall sensitivity, the NbN SSPDs significantly outperform their semiconductor counterparts. An ultrafast quantum cryptography communication technology based on SSPDs is proposed and discussed.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Donkor, E.; Pirich, A.R.; Brandt, H.E.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Quantum Information and Computation
Notes Approved no
Call Number Serial 1514
Permanent link to this record
 

 
Author Korneev, A.; Lipatov, A.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R.
Title GHz counting rate NbN single-photon detector for IR diagnostics of VLSI CMOS circuits Type Journal Article
Year 2003 Publication Microelectronic Engineering Abbreviated Journal Microelectronic Engineering
Volume 69 Issue 2-4 Pages 274-278
Keywords (down) NbN SSPD, SNSPD, applications
Abstract We present a new, simple to manufacture superconducting single-photon detector operational in the range from ultraviolet to mid-infrared radiation wavelengths. The detector combines GHz counting rate, high quantum efficiency and very low level of dark (false) counts. At 1.3–1.5 μm wavelength range our detector exhibits a quantum efficiency of 5–10%. The detector photoresponse voltage pulse duration was measured to be about 150 ps with jitter of 35 ps and both of them were limited mostly by our measurement equipment. In terms of quantum efficiency, dark counts level, speed of operation the detector surpasses all semiconductor counterparts and was successfully applied for CMOS integrated circuits diagnostics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1511
Permanent link to this record
 

 
Author Zhang, J.; Boiadjieva, N.; Chulkova, G.; Deslandes, H.; Gol'tsman, G. N.; Korneev, A.; Kouminov, P.; Leibowitz, M.; Lo, W.; Malinsky, R.; Okunev, O.; Pearlman, A.; Slysz, W.; Smirnov, K.; Tsao, C.; Verevkin, A.; Voronov, B.; Wilsher, K.; Sobolewski, R.
Title Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors Type Journal Article
Year 2003 Publication Electron. Lett. Abbreviated Journal Electron. Lett.
Volume 39 Issue 14 Pages 1086-1088
Keywords (down) NbN SSPD, SNSPD, applications
Abstract The 3.5 nm thick-film, meander-structured NbN superconducting single-photon detectors have been implemented in the CMOS circuit-testing system based on the detection of near-infrared photon emission from switching transistors and have significantly improved the performance of the system. Photon emissions from both p- and n-MOS transistors have been observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-5194 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1512
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Gol'tsman, G.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Verevkin, A.; Sobolewski, R.
Title Superconducting single-photon ultrathin NbN film detector Type Journal Article
Year 2005 Publication Quantum Electronics Abbreviated Journal
Volume 35 Issue 8 Pages 698-700
Keywords (down) NbN SSPD, SNSPD
Abstract Superconducting single-photon ultrathin NbN film detectors are studied. The development of manufacturing technology of detectors and the reduction of their operating temperature down to 2 K resulted in a considerable increase in their quantum efficiency, which reached in the visible region (at 0.56 μm) 30%—40%, i.e., achieved the limit determined by the absorption coefficient of the film. The quantum efficiency exponentially decreases with increasing wavelength, being equal to ~20% at 1.55 μm and ~0.02% at 5 μm. For the dark count rate of ~10-4s-1, the experimental equivalent noise power was 1.5×10-20 W Hz-1/2; it can be decreased in the future down to the record low value of 5×10-21 W Hz-1/2. The time resolution of the detector is 30 ps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Approved no
Call Number Serial 383
Permanent link to this record