|   | 
Details
   web
Records
Author Zolotov, P. I.; Vakhtomin, Yu. B.; Divochiy, A. V.; Seleznev, V. A.; Smirnov, K. V.
Title Technology development of resonator-based structures for efficiency increasing of NBN detectors of IR single photons Type Journal Article
Year 2016 Publication Proc. 5th Int. Conf. Photonics and Information Optics Abbreviated Journal Proc. 5th Int. Conf. Photonics and Information Optics
Volume Issue Pages 115-116
Keywords NbN SSPD
Abstract (up) This paper presents a technology of fabrication of NbN superconductive single- photon detectors, using resonator structures. The main results are related to optimization of the process of NbN sputtering over substrate with metallic mirrors and SiO 2 /Si 3 N 4 layers /4 thick. Investigation of the quantum efficiency of fabricated devices at 1.6 K on 1.55 μm showed triple-magnified value compared to standard Si/NbN structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-5-7262-2215-8 Medium
Area Expedition Conference
Notes http://fioconf.mephi.ru/files/2015/12/FIO2016-Sbornik.pdf Разработка технологии создания резонаторных структур для увеличения квантовой эффективности NBN детекторов ИК-фотонов Approved no
Call Number Serial 1811
Permanent link to this record
 

 
Author Divochiy, A.; Misiaszek, M.; Vakhtomin, Y.; Morozov, P.; Smirnov, K.; Zolotov, P.; Kolenderski, P.
Title Single photon detection system for visible and infrared spectrum range Type Journal Article
Year 2018 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 43 Issue 24 Pages 6085-6088
Keywords
Abstract (up) We demonstrate niobium nitride based superconducting single-photon detectors sensitive in the spectral range 452-2300 nm. The system performance was tested in a real-life experiment with correlated photons generated by means of spontaneous parametric downconversion, where one photon was in the visible range and the other was in the infrared range. We measured a signal to noise ratio as high as 4x10(4) in our detection setting. A photon detection efficiency as high as 64% at 1550 nm and 15% at 2300 nm was observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes https://arxiv.org/abs/1807.04273 Approved no
Call Number Serial 1227
Permanent link to this record
 

 
Author Smirnov, E.; Golikov, A.; Zolotov, P.; Kovalyuk, V.; Lobino, M.; Voronov, B.; Korneev, A.; Goltsman, G.
Title Superconducting nanowire single-photon detector on lithium niobate Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051025
Keywords SSPD, SNSPD, lithium niobate, LN
Abstract (up) We demonstrate superconducting niobium nitride nanowires folded on top of lithium niobate substrate. We report of 6% system detection efficiency at 20 s−1 dark count rate at telecommunication wavelength (1550 nm). Our results shown great potential for the use of NbN nanowires in the field of linear and nonlinear integrated quantum photonics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1194
Permanent link to this record
 

 
Author Seleznev, V. A.; Divochiy, A. V.; Vakhtomin, Y. B.; Morozov, P. V.; Zolotov, P. I.; Vasil'ev, D. D.; Moiseev, K. M.; Malevannaya, E. I.; Smirnov, K. V.
Title Superconducting detector of IR single-photons based on thin WSi films Type Conference Article
Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 737 Issue Pages 012032
Keywords WSi SSPD, SNSPD, NEP
Abstract (up) We have developed the deposition technology of WSi thin films 4 to 9 nm thick with high temperature values of superconducting transition (Tc~4 K). Based on deposed films there were produced nanostructures with indicative planar sizes ~100 nm, and the research revealed that even on nanoscale the films possess of high critical temperature values of the superconducting transition (Tc~3.3-3.7 K) which certifies high quality and homogeneity of the films created. The first experiments on creating superconducting single-photon detectors showed that the detectors' SDE (system detection efficiency) with increasing bias current (I b) reaches a constant value of ~30% (for X=1.55 micron) defined by infrared radiation absorption by the superconducting structure. To enhance radiation absorption by the superconductor there were created detectors with cavity structures which demonstrated a practically constant value of quantum efficiency >65% for bias currents Ib>0.6-Ic. The minimal dark counts level (DC) made 1 s-1 limited with background noise. Hence WSi is the most promising material for creating single-photon detectors with record SDE/DC ratio and noise equivalent power (NEP).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1235
Permanent link to this record
 

 
Author Baeva, E. M.; Sidorova, M. V.; Korneev, A. A.; Smirnov, K. V.; Divochy, A. V.; Morozov, P. V.; Zolotov, P. I.; Vakhtomin, Y. B.; Semenov, A. V.; Klapwijk, T. M.; Khrapai, V. S.; Goltsman, G. N.
Title Thermal properties of NbN single-photon detectors Type Journal Article
Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 10 Issue 6 Pages 064063 (1 to 8)
Keywords NbN SSPD, SNSPD
Abstract (up) We investigate thermal properties of a NbN single-photon detector capable of unit internal detection efficiency. Using an independent calibration of the coupling losses, we determine the absolute optical power absorbed by the NbN film and, via resistive superconductor thermometry, the temperature dependence of the thermal resistance Z(T) of the NbN film. In principle, this approach permits simultaneous measurement of the electron-phonon and phonon-escape contributions to the energy relaxation, which in our case is ambiguous because of the similar temperature dependencies. We analyze Z(T) with a two-temperature model and impose an upper bound on the ratio of electron and phonon heat capacities in NbN, which is surprisingly close to a recent theoretical lower bound for the same quantity in similar devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1226
Permanent link to this record