toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gershenzon, E. M.; Goltsman, G. N. url  openurl
  Title Zeeman effect in excited-states of donors in germanium Type Journal Article
  Year 1972 Publication Sov. Phys. Semicond. Abbreviated Journal Sov. Phys. Semicond.  
  Volume 6 Issue 3 Pages 509  
  Keywords Ge, donors, Zeeman effect  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Amer Inst Physics 1305 Walt Whitman Rd, Ste 300, Melville, Ny 11747-4501 Usa Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1737  
Permanent link to this record
 

 
Author Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol'tsman, G.; Bezryadin, A. url  doi
openurl 
  Title Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts Type Journal Article
  Year 2015 Publication Sci. Rep. Abbreviated Journal Sci. Rep.  
  Volume 5 Issue Pages 10174 (1 to 10)  
  Keywords SPD, SSPD, SNSPD  
  Abstract We perform measurements of the switching current distributions of three w approximately 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.  
  Address Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25988591; PMCID:PMC4437302 Approved no  
  Call Number Serial 1344  
Permanent link to this record
 

 
Author Beck, M.; Klammer, M.; Rousseau, I.; Gol’tsman, G. N.; Diamant, I.; Dagan, Y.; Demsar, J. url  doi
openurl 
  Title Probing superconducting gap dynamics with THz pulses Type Conference Article
  Year 2015 Publication CLEO Abbreviated Journal CLEO  
  Volume Issue Pages SM3H.3 (1 to 2)  
  Keywords superconducting gap; electric fields; femtosecond pulses; near infrared radiation; picosecond pulses; superconductors; thin films  
  Abstract We studied superconducting gap dynamics in a BCS superconductor NbN and electron doped cuprate superconductor PCCO following excitation with near-infrared (NIR) and narrow band THz pulses. Systematic studies on PCCO imply very selective electron-phonon coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1345  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Vachtomin, Y. B.; Smirnov, K. V.; Finkel, M. I.; Goltsman, G. N.; Kiselev, O. S.; Kinev, N. V.; Filippenko, L. V.; Koshelets, V. P. url  doi
openurl 
  Title Terahertz imaging system based on superconducting heterodyne integrated receiver Type Conference Article
  Year 2014 Publication Proc. THz and Security Applications Abbreviated Journal Proc. THz and Security Applications  
  Volume Issue Pages 113-125  
  Keywords SIS mixer, SIR, THz imaging  
  Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compared to traditional systems.

In this project we propose a prototype THz imaging system using an 1 pixel SIR and 2D scanner. At a local oscillator frequency of 500 GHz the best noise equivalent temperature difference (NETD) of the SIR is 10 mK at an integration time of 1 s and a detection bandwidth of 4 GHz. The scanner consists of two rotating flat mirrors placed in front of the antenna consisting of a spherical primary reflector and an aspherical secondary reflector. The diameter of the primary reflector is 0.3 m. The operating frequency of the imaging system is 600 GHz, the frame rate is 0.1 FPS, the scanning area is 0.5 × 0.5 m2, the image resolution is 50 × 50 pixels, the distance from an object to the scanner was 3 m. We have obtained THz images with a spatial resolution of 8 mm and a NETD of less than 2 K.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Dordrecht Editor Corsi, C.; Sizov, F.  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-94-017-8828-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1368  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Temperature dependence of the receiver noise temperature and IF bandwidth of superconducting hot electron bolometer mixers Type Journal Article
  Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 27 Issue 8 Pages 085013 (1 to 5)  
  Keywords NbN HEB mixers  
  Abstract In this paper we study the temperature dependence of the receiver noise temperature and IF noise bandwidth of superconducting hot electron bolometer (HEB) mixers. Three superconducting NbN HEB devices of different transition temperatures (Tc) are measured at 0.85 THz and 1.4 THz at different bath temperatures (Tbath) between 4 K and 9 K. Measurement results demonstrate that the receiver noise temperature of superconducting NbN HEB devices is nearly constant for Tbath/Tc, less than 0.8, which is consistent with the simulation based on a distributed hot-spot model. In addition, the IF noise bandwidth appears independent of Tbath/Tc, indicating the dominance of phonon cooling in the investigated HEB devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1358  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: