|   | 
Details
   web
Records
Author Verevkin, A.; Slysz, W.; Pearlman, A.; Zhang, J.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Currie, M.
Title Real-time GHz-rate counting of infrared photons using nanostructured NbN superconducting detectors Type Conference Article
Year 2003 Publication (up) CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages CThM8
Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Detectors; Photon counting; Quantum communications; Quantum cryptography; Single photon detectors; Superconductors
Abstract We demonstrate that our ultrathin, nanometer-width NbN superconducting single-photon detectors are capable of above 1-GHz-frequency, real-time counting of near-infrared photons. The measured system jitter of the detector is below 15 ps.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference
Notes Approved no
Call Number Serial 1517
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Divochiy, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Gol’tsman, G.; Lagoudakis, K.G.; Benkahoul, M.; Lévy, F.; Fiore, A.
Title Superconducting nanowire photon number resolving detector at telecom wavelength Type Conference Article
Year 2008 Publication (up) CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages Qmj1 (1 to 2)
Keywords PNR SSPD; SNSPD; Detectors; Infrared; Low light level; Diode lasers; Photons; Scanning electron microscopy; Superconductors; Ti:sapphire lasers
Abstract We demonstrate a photon-number-resolving (PNR) detector, based on parallel superconducting nanowires, capable of resolving up to 5 photons in the telecommunication wavelength range, with sensitivity and speed far exceeding existing approaches.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-55752-859-9 Medium
Area Expedition Conference
Notes Approved no
Call Number Marsili:08 Serial 1243
Permanent link to this record
 

 
Author Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Lo, W.; Wilsher, K.
Title Infrared picosecond superconducting single-photon detectors for CMOS circuit testing Type Conference Article
Year 2003 Publication (up) CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages Cmv4
Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Electron beam lithography; Infrared detectors; Infrared radiation; Quantum efficiency; Single photon detectors; Superconductors
Abstract Novel, NbN superconducting single-photon detectors have been developed for ultrafast, high quantum efficiency detection of single quanta of infrared radiation. Our devices have been successfully implemented in a commercial VLSI CMOS circuit testing system.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference
Notes Approved no
Call Number Serial 1518
Permanent link to this record
 

 
Author Parrott, Edward P. J.; Zeitler, J. Axel; Fris<cc><152>c<cc><152>ic<cc><81>, Tomislav; Pepper, Michael; Jones, William; Day, Graeme M.; Gladden, Lynn F.
Title Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals Type Journal Article
Year 2009 Publication (up) Crystal Growth & Design Abbreviated Journal Crystal Growth & Design
Volume 9 Issue 3 Pages 1452-1460
Keywords supramolecular recognition, infrared, terahertz, IR, THz, TDS
Abstract Terahertz time-domain-spectroscopy (THz-TDS) has emerged as a versatile spectroscopic technique, and an alternative to powder X-ray diffraction in the characterization of molecular crystals. We tested the ability of terahertz spectroscopy to distinguish between chiral and racemic hydrogen-bonded cocrystals that are similar in molecular and supramolecular structure. Terahertz spectroscopy readily distinguished between the isostructural cocrystals of theophylline with chiral and racemic forms of malic acid which are almost identical in molecular structure and supramolecular architecture. Similarly, the cocrystals of theophylline with chiral and racemic forms of tartaric acid, which are similar at the molecular level but dissimilar in crystal packing, were distinguished unequivocally. The investigation of the same cocrystals using X-ray powder diffraction and Raman spectroscopy suggested that THz-TDS is comparable in sensitivity to diffraction methods and more sensitive than Raman spectroscopy to changes in cocrystal architecture. The differences in spectra acquired by THz-TDS could be further enhanced by cooling the samples to 109 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 567
Permanent link to this record
 

 
Author Krasnopolsky, Vladimir A.; Maillard, Jean Pierre; C. Owen, Tobias
Title Detection of methane in the martian atmosphere: evidence for life? Type Journal Article
Year 2004 Publication (up) Icarus Abbreviated Journal Icarus
Volume 172 Issue 2 Pages 537-547
Keywords FTS, Mars atmosphere, methane absorption lines, IR spectroscopy, infrared spectroscopy, landfill gas
Abstract Using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope, we observed a spectrum of Mars at the P-branch of the strongest CH4 band at 3.3 μm with resolving power of 180,000 for the apodized spectrum. Summing up the spectral intervals at the expected positions of the 15 strongest Doppler-shifted martian lines, we detected the absorption by martian methane at a 3.7 sigma level which is exactly centered in the summed spectrum. The observed CH4 mixing ratio is 10±3 ppb. Total photochemical loss of CH4 in the martian atmosphere is equal to View the MathML source, the CH4 lifetime is 340 years and methane should be uniformly mixed in the atmosphere. Heterogeneous loss of atmospheric methane is probably negligible, while the sink of CH4 during its diffusion through the regolith may be significant. There are no processes of CH4 formation in the atmosphere, so the photochemical loss must therefore be balanced by abiogenic and biogenic sources. Outgassing from Mars is weak, the latest volcanism is at least 10 million years old, and thermal emission imaging from the Mars Odyssey orbiter does not reveal any hot spots on Mars. Hydrothermal systems can hardly be warmer than the room temperature at which production of methane is very low in terrestrial waters. Therefore a significant production of hydrothermal and magmatic methane is not very likely on Mars. The calculated average production of CH4 by cometary impacts is 2% of the methane loss. Production of methane by meteorites and interplanetary dust does not exceed 4% of the methane loss. Methane cannot originate from an extinct biosphere, as in the case of “natural gas” on Earth, given the exceedingly low limits on organic matter set by the Viking landers and the dry recent history which has been extremely hostile to the macroscopic life needed to generate the gas. Therefore, methanogenesis by living subterranean organisms is a plausible explanation for this discovery. Our estimates of the biomass and its production using the measured CH4 abundance show that the martian biota may be extremely scarce and Mars may be generally sterile except for some oases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 879
Permanent link to this record