Records |
Author |
Verevkin, A.; Zhang, J.; Slysz, W.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smimov, K.; Gol'tsman, G. N. |
Title |
Spectral sensitivity and temporal resolution of NbN superconducting single-photon detectors |
Type |
Conference Article |
Year |
2002 |
Publication |
Proc. 13th Int. Symp. Space Terahertz Technol. |
Abbreviated Journal |
Proc. 13th Int. Symp. Space Terahertz Technol. |
Volume |
|
Issue |
|
Pages |
105-111 |
Keywords |
NbN SSPD, SNSPD |
Abstract |
We report our studies on spectral sensitivity and time resolution of superconducting NbN thin film single-photon detectors (SPDs). Our SPDs exhibit an everimentally measured detection efficiencies (DE) from — 0.2% at 2=1550 nm up to —3% at lambda=405 nm wavelength for 10-nm film thickness devices and up to 3.5% at lambda=1550 nm for 3.5-nm film thickness devices. Spectral dependences of detection efficiency (DE) at 2=0.4 —3.0 pm range are presented. With variable optical delay setup, it is shown that NbN SPD potentially can resolve optical pulses with the repetition rate up to 10 GHz at least. The observed full width at the half maximum (FWHM) of the signal pulse is about 150-180 ps, limited by read-out electronics. The jitter of NbN SPD is measured to be —35 ps at optimum biasing. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1528 |
Permanent link to this record |
|
|
|
Author |
Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol'tsman, G.; Bezryadin, A. |
Title |
Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts |
Type |
Journal Article |
Year |
2015 |
Publication |
Sci. Rep. |
Abbreviated Journal |
Sci. Rep. |
Volume |
5 |
Issue |
|
Pages |
10174 (1 to 10) |
Keywords |
SPD, SSPD, SNSPD |
Abstract |
We perform measurements of the switching current distributions of three w approximately 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. |
Address |
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:25988591; PMCID:PMC4437302 |
Approved |
no |
Call Number |
|
Serial |
1344 |
Permanent link to this record |
|
|
|
Author |
Korneev, A. A.; Korneeva, Y. P.; Mikhailov, M. Yu.; Pershin, Y. P.; Semenov, A. V.; Vodolazov, D. Yu.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Yu.; Goltsman, G. N. |
Title |
Characterization of MoSi superconducting single-photon detectors in the magnetic field |
Type |
Journal Article |
Year |
2015 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
25 |
Issue |
3 |
Pages |
2200504 (1 to 4) |
Keywords |
SSPD, SNSPD |
Abstract |
We investigate the response mechanism of nanowire superconducting single-photon detectors (SSPDs) made of amorphous MoxSi1-x. We study the dependence of photon count and dark count rates on bias current in magnetic fields up to 113 mT at 1.7 K temperature. The observed behavior of photon counts is similar to the one recently observed in NbN SSPDs. Our results show that the detecting mechanism of relatively high-energy photons does not involve the vortex penetration from the edges of the film, and on the contrary, the detecting mechanism of low-energy photons probably involves the vortex penetration from the film edges. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ akorneev @ KorneevIEEE2015 |
Serial |
991 |
Permanent link to this record |
|
|
|
Author |
Korneev, A.; Korneeva, Y.; Manova, N.; Larionov, P.; Divochiy, A.; Semenov, A.; Chulkova, G.; Vachtomin, Y.; Smirnov, K.; Goltsman, G. |
Title |
Recent nanowire superconducting single-photon detector optimization for practical applications |
Type |
Journal Article |
Year |
2013 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
23 |
Issue |
3 |
Pages |
2201204 (1 to 4) |
Keywords |
SSPD, SNSPD |
Abstract |
In this paper, we present our approaches to the development of fiber-coupled superconducting single photon detectors with enhanced photon absorption. For such devices we have measured detection efficiency in wavelength range from 500 to 2000 nm. The best fiber coupled devices exhibit detection efficiency of 44.5% at 1310 nm wavelength and 35.5% at 1550 nm at 10 dark counts per second. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ akorneev @ KorneevIEEE2013 |
Serial |
996 |
Permanent link to this record |
|
|
|
Author |
Gol’tsman, G.; Korneev, A.; Tarkhov, M.; Seleznev, V.; Divochiy, A.; Minaeva, O.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K. |
Title |
Middle-infrared ultrafast superconducting single photon detector |
Type |
Conference Article |
Year |
2007 |
Publication |
32nd IRMW / 15th ICTE |
Abbreviated Journal |
32nd IRMW / 15th ICTE |
Volume |
|
Issue |
|
Pages |
115-116 |
Keywords |
SSPD, SNSPD |
Abstract |
We present the results of the research on quantum efficiency of the ultrathin-film superconducting single-photon detectors (SSPD) in the wavelength rage from 1 mum to 5.7 mum. Reduction of operation temperature to 1.6 K allowed us to measure quantum efficiency of ~1 % at 5.7 mum wavelength with the SSPD made from 4-nm-thick NbN film. In a pursuit of further performance improvement we endeavored SSPD fabricating from 4-nm-thick MoRe film as an alternative material. The MoRe film exhibited transition temperature of 7.7K, critical current density at 4.2 K temperature was 1.1times10 6 A/cm 2 , and diffusivity 1.73 cmVs. The single-photon response was observed with MoRe SSPD at 1.3 mum wavelength with quantum efficiency estimated to be 0.04%. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1246 |
Permanent link to this record |