|   | 
Details
   web
Records
Author Rasulova, G. K.; Brunkov, P. N.; Pentin, I. V.; Egorov, A. Y.; Knyazev, D. A.; Andrianov, A. V.; Zakhar’in, A. O.; Konnikov, S. G.; Gol’tsman, G. N.
Title A weakly coupled semiconductor superlattice as a potential for a radio frequency modulated terahertz light emitter Type Journal Article
Year (up) 2012 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 100 Issue 13 Pages 131104 (1 to 4)
Keywords semiconductor superlattice
Abstract The bolometer response to THz radiation from a weakly coupled GaAs/AlGaAs superlattice biased in the self-oscillations regime has been observed. The bolometer signal is modulated with the frequency equal to the fundamental frequency of superlattice self-oscillations. The frequency spectrum of the bolometer signal contains higher harmonics whose frequency is a multiple of fundamental frequency of self-oscillations.

This work was supported by State Contracts Nos. 16.740.11.0044 and 16.552.11.7002 of Ministry of Education and Science of the Russian Federation. Structural characterization was made on the equipment of the Joint Research Centre «Material science and characterization in advanced technology» (Ioffe Institute, St. Petersburg, Russia).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1379
Permanent link to this record
 

 
Author Kardakova, A.; Finkel, M.; Morozov, D.; Kovalyuk, V.; An, P.; Dunscombe, C.; Tarkhov, M.; Mauskopf, P.; Klapwijk, T.M.; Goltsman, G.
Title The electron-phonon relaxation time in thin superconducting titanium nitride films Type Journal Article
Year (up) 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 103 Issue 25 Pages 252602 (1 to 4)
Keywords disordered TiN films, electron-phonon relaxation time
Abstract We report on the direct measurement of the electron-phonon relaxation time, τeph, in disordered TiN films. Measured values of τeph are from 5.5 ns to 88 ns in the 4.2 to 1.7 K temperature range and consistent with a T−3 temperature dependence. The electronic density of states at the Fermi level N0 is estimated from measured material parameters. The presented results confirm that thin TiN films are promising candidate-materials for ultrasensitive superconducting detectors.

The work was supported by the Ministry of Education and Science of the Russian Federation, Contract No. 14.B25.31.0007 and by the RFBR Grant No. 13-02-91159.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 941
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Charayev, I.; Voronov, B.M.; Finkel, M.; Klapwijk, T.M.; Morozov, S.; Presniakov, M.; Bobrinetskiy, I.; Ibragimov, R.; Goltsman, G.
Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation Type Journal Article
Year (up) 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 103 Issue 18 Pages 181121 (1 to 5)
Keywords carbon nanotubes, CNT, THz radiation, SiO2 substrate
Abstract We report on the voltage response of carbon nanotube devices to sub-terahertz (THz) radiation. The devices contain carbon nanotubes (CNTs), which are over their length partially suspended and partially Van der Waals bonded to a SiO2 substrate, causing a difference in thermal contact. We observe a DC voltage upon exposure to 140 GHz radiation. Based on the observed gate voltage and power dependence, at different temperatures, we argue that the observed signal is both thermal and photovoltaic. The room temperature responsivity in the microwave to THz range exceeds that of CNT based devices reported before. Authors thank Professor P. Barbara for providing the catalyst for CNT growth and Dr. N. Chumakov and V. Rylkov for stimulating discussions. The work was supported by the RFBR (Grant No. 12-02-01291-a) and by the Ministry of Education and Science of the Russian Federation (Contract No. 14.B25.31.0007). G.F. acknowledges support of the RFBR grant 12-02-01005-a.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1171
Permanent link to this record
 

 
Author Bennett, Douglas A.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.
Title Phase-slip lines as a resistance mechanism in transition-edge sensors Type Journal Article
Year (up) 2014 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 104 Issue Pages 042602
Keywords microbolometers, TES, phase-slip lines, PSL
Abstract The fundamental mechanism of resistance in voltage-biased superconducting films is poorly understood despite its importance as the basis of transition-edge sensors (TESs). TESs are utilized in state-of-the-art microbolometers and microcalorimeters covering a wide range of energies and applications. We present a model for the resistance of a TES based on phase-slip lines (PSLs) and compare the model to data. One of the model's predictions, discrete changes in the number of PSLs, is a possible explanation for the observed switching between discrete current states in localized regions of bias.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 929
Permanent link to this record
 

 
Author Miao, W.; Zhang, W.; Zhong, J. Q.; Shi, S. C.; Delorme, Y.; Lefevre, R.; Feret, A; Vacelet, T
Title Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges Type Journal Article
Year (up) 2014 Publication Appl. Phys. Lett. Abbreviated Journal <ef><bf><bc>Appl. Phys. Lett.
Volume 104 Issue Pages 052605(1-4)
Keywords NbN HEB mixers, local oscillator power, RF nonuniform absorption
Abstract We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 935
Permanent link to this record