|   | 
Details
   web
Records
Author González, F. J.; Boreman, G. D.
Title Comparison of dipole, bowtie, spiral and log-periodic IR antennas Type Journal Article
Year 2005 Publication Infrared Physics & Technology Abbreviated Journal Inf Phys & Technol
Volume 46 Issue 5 Pages 418-428
Keywords optical antennas; Microbolometer; Infrared antennas; Antenna efficiency; Antenna-coupled detectors
Abstract (up) Antenna-coupled microbolometers use planar lithographic antennas to couple infrared radiation into a bolometer with sub-micron dimensions. In this paper four different types of infrared antennas were fabricated on thin grounded-substrates and coupled to microbolometers. Dipole, bowtie, spiral and log-periodic IR antenna-coupled detectors were measured at 10.6 μm and their performance compared. A new method to calculate the radiation efficiency based on the spatial and angular response of infrared antennas is presented and used to evaluate their performance. The calculated radiation efficiency for the dipole, bowtie, spiral and log-periodic IR antennas was 20%, 37%, 25% and 46% respectively. A dipole-length study was performed and shows that the quasistatic value of the effective permittivity accurately describes the incident wavelength in the substrate at infrared frequencies for antennas on a thin substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 739
Permanent link to this record
 

 
Author Alda, Javier; Rico-García, José M.; López-Alonso, José M.; Boreman, G.
Title Optical antennas for nano-photonic applications Type Journal Article
Year 2005 Publication Nanotechnology Abbreviated Journal Nanotech.
Volume 16 Issue 5 Pages S230-S234
Keywords optical antennas
Abstract (up) Antenna-coupled optical detectors, also named optical antennas, are being developed and proposed as alternative detection devices for the millimetre, infrared, and visible spectra. Optical and infrared antennas represent a class of optical components that couple electromagnetic radiation in the visible and infrared wavelengths in the same way as radioelectric antennas do at the corresponding wavelengths. The size of optical antennas is in the range of the detected wavelength and they involve fabrication techniques with nanoscale spatial resolution. Optical antennas have already proved and potential advantages in the detection of light showing polarization dependence, tuneability, and rapid time response. They also can be considered as point detectors and directionally sensitive elements. So far, these detectors have been thoroughly tested in the mid-infrared with some positive results in the visible. The measurement and characterization of optical antennas requires the use of an experimental set-up with nanometric resolution. On the other hand, a computation simulation of the interaction between the material structures and the incoming electromagnetic radiation is needed to explore alternative designs of practical devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 734
Permanent link to this record
 

 
Author Morozov, D. V.; Smirnov, K. V.; Smirnov, A. V.; Lyakhov, V. A.; Goltsman, G. N.
Title A millimeter-submillimeter phonon-cooled hot-electron bolometer mixer based on two-dimensional electron gas in an AlGaAs/GaAs heterostructure Type Journal Article
Year 2005 Publication Semicond. Abbreviated Journal Semicond.
Volume 39 Issue 9 Pages 1082-1086
Keywords 2D electron gas, AlGaAs/GaAs heterostructures, mixers
Abstract (up) Experimental results obtained by studying the main characteristics of a millimeter-submillimeter wave mixer based on the hot-electron effect in a two-dimensional electron gas in a AlGaAs/GaAs heterostructure with a phonon-scattering cooling mechanism for charge carriers are reported. The gain bandwidth of the mixer is 4 GHz, the internal conversion losses are 13 dB, and the optimum local-oscillator power is 0.5 μW (for a mixer area of 1 μm2). It is shown that a millimeter-submillimeter-wave receiver with a noise temperature of 1900 K can be developed on the basis of a AlGaAs/GaAs mixer. This mixer also appears to be promising for use in array receiver elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1463
Permanent link to this record
 

 
Author Hajenius, M.; Barends, R.; Gao, J. R.; Klapwijk, T. M.; Baselmans, J. J. A.; Baryshev, A.; Voronov, B.; Gol'tsman, G.
Title Local resistivity and the current-voltage characteristics of hot electron bolometer mixers Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 495-498
Keywords HEB mixer distributed model, HEB distributed model, distributed HEB model
Abstract (up) Hot-electron bolometer devices, used successfully in low noise heterodyne mixing at frequencies up to 2.5 THz, have been analyzed. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, is used to model pumped IV curves and understand the physical conditions during the mixing process. We argue that the mixing is predominantly due to the strongly temperature dependent local resistivity of the NbN. Experimentally we identify the origins of different transition temperatures in a real HEB device, suggesting the importance of the intrinsic resistive transition of the superconducting bridge in the modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 980
Permanent link to this record
 

 
Author Stellari, Franco; Song, Peilin
Title Testing of ultra low voltage CMOS microprocessors using the superconducting single-photon detector (SSPD) Type Conference Article
Year 2005 Publication Proc. 12th IPFA Abbreviated Journal Proc. 12th IPFA
Volume Issue Pages 2
Keywords SSPD, CMOS testing
Abstract (up) In F. Stellari and P. Song (2004) the authors have shown a comparison among different detectors used for diagnosing integrated circuits (ICs) by means of the PICA method. In their experiments they used two versions of the SSPD detector (p-SSPD is a prototype version, while c-SSPD is the first commercially available generation of the detector as presented in W. K. Lo et al. (2002), as well as the imaging detector (S-25 photo-multiplier tube (PMT) as discussed in W. G. McMullan (1987)) used in the conventional PICA technique. A microprocessor chip fabricated in a 0.13 μm 1.2 V technology is used to show that c-SSPD provides a significant reduction in acquisition time for the collection of optical waveforms from chips running at very low. In this paper, the authors summarize the main results.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-7803-9301-5 Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1055
Permanent link to this record