|   | 
Details
   web
Records
Author Anosov, A. A.; Barabanenkov, Yu. N.; Kazanskii, A. S.; Less, Yu. A.; Sharakshane, A. S.
Title The inverse problem of acoustothermography with correlation reception of thermal acoustic radiation Type Journal Article
Year 2009 Publication Acoust. Phys. Abbreviated Journal
Volume 55 Issue 1 Pages 114-119
Keywords (up) acoustic thermography, acoustothermography
Abstract For the one-dimensional inverse problem of acoustothermography with correlation reception of thermal acoustic radiation, an integral equation is presented and experimentally verified. A method of solving the inverse problem is proposed. The method is based on combining the correlation functions of thermal acoustic radiation that were obtained for different distances between the receivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1131
Permanent link to this record
 

 
Author Venkatasubramanian, Chandrasekaran; Cabarcos, Orlando M.; Allara, David L. Horn, Mark W.; Ashok, S.
Title Correlation of temperature response and structure of annealed VOx thin films for IR detector applications Type Journal Article
Year 2009 Publication J. Vac. Sci. Technol. A Abbreviated Journal
Volume 27 Issue 4 Pages 6
Keywords (up) Annealing
Abstract The effects of thermal annealing on vanadium oxide (VOx) thin films prepared by pulsed-dc magnetron sputtering were studied to explore methods of improving the efficiency of uncooled IR imaging microbolometers, particularly with respect to maximizing the temperature coefficients of resistance (TCR) (typically ~2%) while minimizing resistivity values (typically 0.05–5 Ω cm). Since high TCR values are usually associated with high resistivities, the experiments were designed to find processing conditions that provide an optimal balance in these properties and to then determine the underlying structural correlations which would enable rational design of thin films for this specific application. VOx films of different compositions were deposited by pulsed-dc reactive sputtering from a vanadium target at different oxygen flow rates. The deposited films were further modified by annealing in inert (nitrogen) and oxidizing (oxygen) atmospheres at four different temperatures for 10, 20, or 30 min at a time. The resistivities of the as-deposited films ranged from 0.2 to 13 Ω cm and the TCR values varied from –1.6% to –2.2%. Depending on the exact annealing conditions, several orders of magnitude change in resistance and significant variations in TCR were observed. Optimal results were obtained with annealing in a nitrogen atmosphere. Structural characterization by x-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and Raman spectroscopy indicated changes in the film crystallinity and phase for annealing conditions over 300 °C with the onset and extent of the changes dependent on which annealing atmosphere was used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Annealing Approved no
Call Number RPLAB @ gujma @ Serial 690
Permanent link to this record
 

 
Author Risacher, C.; Meledin, D.; Belitsky, V.; Bergman, P.
Title First 1.3 THz observations at the APEX telescope Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 54-61
Keywords (up) balanced HEB mixer noise temperature APEX telescope stability Allan variance aperture efficiency
Abstract The Atacama Pathfinder EXperiment (APEX) 12m telescope is operating on the Llano Chajnantor, Chile, since 2003 and a set of state of the art sub-millimeter receivers have been installed for frequencies spanning from 150 GHz to 1500 GHz. In 2008, a balanced 1.3 THz Hot Electron Bolometer (HEB) receiver was installed for the atmospheric window 1250-1380 GHz. This instrument is part of a 4-channel receiver cryostat with the other channels being 211-275 GHz, 275-370 GHz and 380-500 GHz Sideband Separating (SSB) SIS receivers. This paper presents the first observations obtained so far with the 1.3 THz band during its first months of operation. The sky measurements were taken during opportunistic commissioning and science verification phases, when the weather conditions were sufficiently good with a Precipitable Water Vapor (PWV) below 0.25 mm, which was the case only a few nights during these months. We present the first observations of the molecular transition CO J=(11-10) line on different sources such as Orion-FIR4, CW-Leo and SgrB2(M). We describe the many challenges and difficulties encountered for achieving successful THz observations from a large sub-millimeter ground-based telescope.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 619
Permanent link to this record
 

 
Author Doi, Y.; Wang, Z.; Ueda, T.; Nickels, P.; Komiyama, S.; Patrashin, M.; Hosako, I.; Matsuura, S.; Shirahata, M.; Sawayama, Y.; Kawada, M.
Title CSIP – a novel photon-counting detector applicable for the SPICA far-infrared instrument Type Journal Article
Year 2009 Publication SPICA Abbreviated Journal SPICA
Volume Issue SPICA Workshop 2009 Pages
Keywords (up) detectors; Infrared
Abstract We describe a novel GaAs/AlGaAs double-quantumwell device for the infrared photon detection, called ChargeSensitive Infrared Phototransistor (CSIP). The principle of CSIP detector is the photo-excitation of an intersubband transition in a QW as an charge integrating gate and the signal ampli<ef><ac><81>cation by another QW as a channel with very high gain, which provides us with extremely high responsivity (104 – 106 A/W). It has been demonstrated that the CSIP designed for the mid-infrared wavelength (14.7 μm) has an excellent sensitivity; the noise equivalent power (NEP) of 7 × 10-19 W/ with the quantum effciency of ~ 2%. Advantages of the CSIP against the other highly sensitive detectors are, huge dynamic range of > 106, low output impedance of 103 – 104 Ohms, and relatively high operation temperature (> 2 K). We discuss possible applications of the CSIP to FIR photon detection covering 35 – 60 μm waveband, which is a gap uncovered with presently available photoconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 672
Permanent link to this record
 

 
Author Lieberzeit, Peter A.; Dickert, Franz L.
Title Chemosensors in environmental monitoring: challenges in ruggedness and selectivity Type Journal Article
Year 2009 Publication Analytical and Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem
Volume 393 Issue 2 Pages 467-472
Keywords (up) environmental monitoring, in situ sensing, artificial recognition materials, real-life application, molecular imprinting, QCM
Abstract Environmental analysis is a potential key application for chemical sensors owing to their inherent ability to detect analytes on-line and in real time in distributed systems. Operating a chemosensor in a natural environment poses substantial challenges in terms of ruggedness, long-term stability and calibration. This article highlights current trends of achieving both the necessary selectivity and ruggedness: one way is deploying sensor arrays consisting of robust broadband sensors and extracting information via chemometrics. If using only a single sensor is desired, molecularly imprinted polymers offer a straightforward way for designing artificial recognition materials. Molecularly imprinted polymers can be utilized in real-life environments, such as water and air, aiming at detecting analytes ranging from small molecules to entire cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 564
Permanent link to this record