|   | 
Details
   web
Records
Author Karpov, A.; Miller, D.; Stern, J. A.; Bumble, B.; LeDuc, H. G.; Zmuidzinas, J.
Title (up) Broadband SIS mixer for 1 THz Band Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 35-35
Keywords SIS mixer, noise temperature
Abstract We report the development of a low noise and broadband SIS mixer aimed for 1 THz channel of the Caltech Airborne Submillimeter Interstellar Medium Investigations Receiver (CASIMIR), designed for the Stratospheric Observatory for Far Infrared Astronomy, (SOFIA). The mixer uses an array of 0.24 µm² Nb/Al-AlN/NbTiN SIS junctions with critical current density of 30-50 KA/cm². The junctions are shaped in order to optimize the suppression of the Josephson DC currents. We are using a double slot planar antenna to couple the mixer chip with the telescope beam. The RF matching microcircuit is made using Nb and gold films. The mixer IF circuit is designed to cover 4 – 8 GHz band. A test receiver with the new mixer has a low noise operation in a 0.87 – 1.12 THz band. The minimum DSB receiver noise measured at 1 THz is 260 K (Y=1.64), apparently the lowest reported up to date. The receiver noise corrected for the loss in the LO injection beam splitter and in the cryostat window is 200 K. The combination of a broad operation band of about 250 GHz with a low receiver noise is making the new mixer a useful element for application at SOFIA. We will discuss the prospective of a further improvement of the sensitivity and extension of the upper frequency of operation of SIS mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 614
Permanent link to this record
 

 
Author Lieberzeit, Peter A.; Dickert, Franz L.
Title (up) Chemosensors in environmental monitoring: challenges in ruggedness and selectivity Type Journal Article
Year 2009 Publication Analytical and Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem
Volume 393 Issue 2 Pages 467-472
Keywords environmental monitoring, in situ sensing, artificial recognition materials, real-life application, molecular imprinting, QCM
Abstract Environmental analysis is a potential key application for chemical sensors owing to their inherent ability to detect analytes on-line and in real time in distributed systems. Operating a chemosensor in a natural environment poses substantial challenges in terms of ruggedness, long-term stability and calibration. This article highlights current trends of achieving both the necessary selectivity and ruggedness: one way is deploying sensor arrays consisting of robust broadband sensors and extracting information via chemometrics. If using only a single sensor is desired, molecularly imprinted polymers offer a straightforward way for designing artificial recognition materials. Molecularly imprinted polymers can be utilized in real-life environments, such as water and air, aiming at detecting analytes ranging from small molecules to entire cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 564
Permanent link to this record
 

 
Author Stucki, Damien; Barreiro, Claudio; Fasel, Sylvain; Gautier, Jean-Daniel; Gay, Olivier; Gisin, Nicolas; Thew, Rob; Thoma, Yann; Trinkler, Patrick; Vannel, Fabien; Zbinden, Hugo
Title (up) Continuous high speed coherent one-way quantum key distribution Type Journal Article
Year 2009 Publication Optics Express Abbreviated Journal Opt. Express
Volume 17 Issue 16 Pages 13326-13334
Keywords quantum cryptography, QKD, PNS, SSPD, coherent one way, COW
Abstract Quantum key distribution (QKD) is the first commercial quantum technology operating at the level of single quanta and is a leading light for quantum-enabled photonic technologies. However, controlling these quantum optical systems in real world environments presents significant challenges. For the first time, we have brought together three key concepts for future QKD systems: a simple high-speed protocol; high performance detection; and integration both, at the component level and for standard fibre network connectivity. The QKD system is capable of continuous and autonomous operation, generating secret keys in real time. Laboratory and field tests were performed and comparisons made with robust InGaAs avalanche photodiodes and superconducting detectors. We report the first real world implementation of a fully functional QKD system over a 43dB-loss (150km) transmission line in the Swisscom fibre optic network where we obtained average real-time distribution rates over 3 hours of 2.5bps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 602
Permanent link to this record
 

 
Author Venkatasubramanian, Chandrasekaran; Cabarcos, Orlando M.; Allara, David L. Horn, Mark W.; Ashok, S.
Title (up) Correlation of temperature response and structure of annealed VOx thin films for IR detector applications Type Journal Article
Year 2009 Publication J. Vac. Sci. Technol. A Abbreviated Journal
Volume 27 Issue 4 Pages 6
Keywords Annealing
Abstract The effects of thermal annealing on vanadium oxide (VOx) thin films prepared by pulsed-dc magnetron sputtering were studied to explore methods of improving the efficiency of uncooled IR imaging microbolometers, particularly with respect to maximizing the temperature coefficients of resistance (TCR) (typically ~2%) while minimizing resistivity values (typically 0.05–5 Ω cm). Since high TCR values are usually associated with high resistivities, the experiments were designed to find processing conditions that provide an optimal balance in these properties and to then determine the underlying structural correlations which would enable rational design of thin films for this specific application. VOx films of different compositions were deposited by pulsed-dc reactive sputtering from a vanadium target at different oxygen flow rates. The deposited films were further modified by annealing in inert (nitrogen) and oxidizing (oxygen) atmospheres at four different temperatures for 10, 20, or 30 min at a time. The resistivities of the as-deposited films ranged from 0.2 to 13 Ω cm and the TCR values varied from –1.6% to –2.2%. Depending on the exact annealing conditions, several orders of magnitude change in resistance and significant variations in TCR were observed. Optimal results were obtained with annealing in a nitrogen atmosphere. Structural characterization by x-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and Raman spectroscopy indicated changes in the film crystallinity and phase for annealing conditions over 300 °C with the onset and extent of the changes dependent on which annealing atmosphere was used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Annealing Approved no
Call Number RPLAB @ gujma @ Serial 690
Permanent link to this record
 

 
Author Fiore, A.; Marsili, F.; Bitauld, D.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Gol’tsman, G.
Title (up) Counting photons using a nanonetwork of superconducting wires Type Conference Article
Year 2009 Publication Nano-Net Abbreviated Journal
Volume Issue Pages 120-122
Keywords SSPD, SNSPD
Abstract We show how the parallel connection of photo-sensitive superconducting nanowires can be used to count the number of photons in an optical pulse, down to the single-photon level. Using this principle we demonstrate photon-number resolving detectors with unprecedented sensitivity and speed at telecommunication wavelengths.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Berlin, Heidelberg Editor Cheng, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-3-642-02427-6 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1007/978-3-642-02427-6_20 Serial 1242
Permanent link to this record