|   | 
Details
   web
Records
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I.
Title Concentration dependence of the intermediate frequency bandwidth of submillimeter heterodyne AlGaAs/GaAs nanostructures Type Journal Article
Year 2010 Publication Bull. Russ. Acad. Sci. Phys. Abbreviated Journal (down) Bull. Russ. Acad. Sci. Phys.
Volume 74 Issue 1 Pages 100-102
Keywords 2DEG AlGaAs/GaAs heterostructures, THz heterodyne detectors, IF bandwidth
Abstract The concentration dependence of the intermediate frequency bandwidth of heterodyne AlGaAs/GaAs detectors with 2D electron gas is measured using submillimeter spectroscopy with high time resolution at T= 4.2 K. The intermediate frequency bandwidth f3dBfalls from 245 to 145 MHz with increasing concentration of 2D electrons n s = (1.6-6.6) × 10[su11] cm-2. The dependence f3dB ≈ n s – 0.04±is observed in the studied concentration range; this dependence is determined by electron scattering by the deformation potential of acoustic phonons and piezoelectric scattering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1062-8738 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1217
Permanent link to this record
 

 
Author Santavicca,D.F.; Reulet,B.; Karasik,B.S.; Pereverzev,S.V.; Olaya, D.; Gershenson, M.E.; Frunzio, L.; Prober, D.E.
Title Energy resolution of terahertz single-photon-sensitive bolometric detectors Type Journal Article
Year 2010 Publication Applied Physics Letters Abbreviated Journal (down) Appl. Phys. Lett.
Volume 96 Issue 8 Pages 083505 - 083505-3
Keywords
Abstract We report measurements of the energy resolution of ultrasensitive superconducting bolometric detectors. The device is a superconducting titanium nanobridge with niobium contacts. A fast microwave pulse is used to simulate a single higher-frequency photon, where the absorbed energy of the pulse is equal to the photon energy. This technique allows precise calibration of the input coupling and avoids problems with unwanted background photons. Present devices have an intrinsic full-width at half-maximum energy resolution of approximately 23 THz, near the predicted value due to intrinsic thermal fluctuation noise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 601
Permanent link to this record
 

 
Author Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.
Title Quantum noise in a terahertz hot electron bolometer mixer Type Journal Article
Year 2010 Publication Applied Physics Letters Abbreviated Journal (down) Appl. Phys. Lett.
Volume 96 Issue 11 Pages 111113-(1-3)
Keywords HEB mixer, quantum limit, quantum noise, vacuum box, THz, Terahertz
Abstract We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The beta-factor (the quantum efficiency of the HEB) obtained experimentally agrees reasonably well with the calculated value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 624
Permanent link to this record
 

 
Author Terai, Hirotaka; Miki, Shigehito; Yamashita, Taro; Makise, Kazumasa; Wang, Zhen
Title Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors Type Journal Article
Year 2010 Publication Applied Physics Letters Abbreviated Journal (down) Appl. Phys. Lett.
Volume 97 Issue 11 Pages 3
Keywords SSPD
Abstract A readout circuit using superconducting single-flux-quantum (SFQ) circuits has been developed to realize an independently addressable array of superconducting single-photon detectors (SSPDs). We tested the SFQ readout circuits by connecting with SSPDs. The error rates of readout circuits were below 10–5 for input signal amplitude of greater than 18.2 μA. Detection efficiencies (DEs) for single-photon incidents were measured both with and without the connection of a readout circuit. The observed DEs traced almost the same curves regardless of the connection of the readout circuit, except that the SSPD is likely to latch by connecting the readout circuit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 654
Permanent link to this record
 

 
Author Tanner, M. G.; Natarajan, C. M.; Pottapenjara, V. K.; O'Connor, J. A.; Warburton, R. J.; Hadfield, R. H.; Baek, B.; Nam, S.; Dorenbos, S. N.; Bermúdez Ureña, E.; Zijlstra, T.; Klapwijk, T. M.; Zwiller, V.
Title Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon Type Journal Article
Year 2010 Publication Applied Physics Letters Abbreviated Journal (down) Appl. Phys. Lett.
Volume 96 Issue 22 Pages 3
Keywords SNSPD
Abstract Superconducting nanowire single-photon detectors (SNSPDs) have emerged as a highly promising infrared single-photon detector technology. Next-generation devices are being developed with enhanced detection efficiency (DE) at key technological wavelengths via the use of optical cavities. Furthermore, new materials and substrates are being explored for improved fabrication versatility, higher DE, and lower dark counts. We report on the practical performance of packaged NbTiN SNSPDs fabricated on oxidized silicon substrates in the wavelength range from 830 to 1700 nm. We exploit constructive interference from the SiO2/Si interface in order to achieve enhanced front-side fiber-coupled DE of 23.2 % at 1310 nm, at 1 kHz dark count rate, with 60 ps full width half maximum timing jitter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 655
Permanent link to this record