|   | 
Details
   web
Records
Author Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Leiman, V. G.; Fedorov, G.; Goltzman, G. N.; Gayduchenko, I. A.; Titova, N.; Coquillat, D.; But, D.; Knap, W.; Mitin, V.; Shur, M. S.
Title Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection Type Journal Article
Year 2016 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume (down) 120 Issue 4 Pages 044501 (1 to 13)
Keywords carbon nanotubes, CNT detectors, plasmons
Abstract We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”) and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1777
Permanent link to this record
 

 
Author Shcherbatenko, M.; Tretyakov, I.; Lobanov, Yu.; Maslennikov, S. N.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.; Klapwijk, T. M.
Title Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers Type Journal Article
Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal
Volume (down) 109 Issue 13 Pages 132602
Keywords HEB mixer, contacts
Abstract We present a physically consistent interpretation of the dc electrical properties of niobiumnitride (NbN)-based superconducting hot-electron bolometer mixers, using concepts of nonequilibrium superconductivity. Through this, we clarify what physical information can be extracted from the resistive transition and the dc current-voltage characteristics, measured at suitably chosen temperatures, and relevant for device characterization and optimization. We point out that the intrinsic spatial variation of the electronic properties of disordered superconductors, such as NbN, leads to a variation from device to device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1107
Permanent link to this record
 

 
Author Smirnov, K. V.; Divochiy, A. V.; Vakhtomin, Y. B.; Sidorova, M. V.; Karpova, U. V.; Morozov, P. V.; Seleznev, V. A.; Zotova, A. N.; Vodolazov, D. Y.
Title Rise time of voltage pulses in NbN superconducting single photon detectors Type Journal Article
Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume (down) 109 Issue 5 Pages 052601
Keywords SSPD, SNSPD
Abstract We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector Rn, which appears after photon absorption, on its kinetic inductance Lk and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

D.Yu.V. acknowledges the support from the Russian Foundation for Basic Research (Project No. 15-42-02365). K.V.S. acknowledges the financial support from the Ministry of Education and Science of the Russian Federation (Contract No. 3.2655.2014/K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1236
Permanent link to this record
 

 
Author Peltonen, J. T.; Peng, Z. H.; Korneeva, Yu. P.; Voronov, B. M.; Korneev, A. A.; Semenov, A. V.; Gol'tsman, G. N.; Tsai, J. S; Astafiev, Oleg
Title Coherent dynamics and decoherence in a superconducting weak link Type Journal Article
Year 2016 Publication Physic. Rev. B, Abbreviated Journal Physic. Rev. B,
Volume (down) 94 Issue Pages 180508
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 1123
Permanent link to this record
 

 
Author Iomdina, E. N.; Seliverstov, S.; Sianosyan, A.; Teplyakova, K.; Rusova, A.; Goltsman, G.
Title The prospects of using the radiation for the assessment of corneal and scleral hydration Type Abstract
Year 2016 Publication Acta Ophthalmol. Abbreviated Journal Acta Ophthalmol.
Volume (down) 94 Issue Pages
Keywords BWO, avalanche transit‐time diode, medicine, biology
Abstract Purpose

An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells – the cornea and the sclera. THz systems creating images in reflected beams are likely to become ideal instruments of noninvasive testing of corneal and scleral hydration degree as THz radiation is highly sensitive to water content. The paper aims at studying the transmittance and reflectance spectra of the cornea and the sclera of rabbit and human eyes, as well as those of the whole rabbit eye, in the frequency range of 0.13–0.32 THz.

Methods

The experiments were carried out on 3 corneas and 3 rabbit scleras, 2 whole rabbit eyes, and 3 human healthy adult scleras using a specially developed THz system based on reliable and easy‐to‐use continuous wave sources: a backward‐wave oscillator and an avalanche transit‐time diode.

Results

The transmittance spectra of the cornea and the sclera and the dependence of the reflection coefficient of these tissues in THz range on water percentage content were determined. Comparison of the rabbit cornea hydrated from 73.2% to 76.3% concentration by mass demonstrated an approximately linear relationship between THz reflectivity and water concentration. The decrease of free water concentration by 1% leads to a drop of the reflectance coefficient by 13%. The parameters studied displayed noticeable differences between the sclera and the cornea of rabbits and between rabbit sclera and human sclera.

Conclusions

Preliminary results demonstrate that the proposed technique, based on continuous THz radiation, may be used to create a device for noninvasive testing of corneal and scleral hydration, which has good potential of wide‐scale practical application.

The work was supported by the Russian Foundation of Basic Research (grant No.15‐29‐03843)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755375X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1333
Permanent link to this record