toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Goltsman, G. url  openurl
  Title Quantum-photonic integrated circuits Type Conference Article
  Year 2019 Publication Proc. IWQO Abbreviated Journal Proc. IWQO  
  Volume Issue Pages (down) 22-23  
  Keywords WSSPD, waveguide SSPD, SNSPD, quantum optics, integrated optics, superconducting nanowire single-photon detector  
  Abstract We show the design, a history of development as well as the most successful and promising approaches for QPICs realization based on hybrid nanophotonic-superconducting devices, where one of the key elements of such a circuit is a waveguide integrated superconducting single-photon detector (WSSPD). The potential of integration with fluorescent molecules is discussed also.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1287  
Permanent link to this record
 

 
Author Moshkova, M.; Divochiy, A.; Morozov, P.; Vakhtomin, Y.; Antipov, A.; Zolotov, P.; Seleznev, V.; Ahmetov, M.; Smirnov, K. url  doi
openurl 
  Title High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range Type Journal Article
  Year 2019 Publication J. Opt. Soc. Am. B Abbreviated Journal J. Opt. Soc. Am. B  
  Volume 36 Issue 3 Pages (down) B20  
  Keywords NbN PNR SSPD, SNSPD  
  Abstract The use of improved fabrication technology, highly disordered NbN thin films, and intertwined section topology makes it possible to create high-performance photon-number-resolving superconducting single-photon detectors (PNR SSPDs) that are comparable to conventional single-element SSPDs at the telecom range. The developed four-section PNR SSPD has simultaneously an 86±3% system detection efficiency, 35 cps dark count rate, ∼2 ns dead time, and maximum 90 ps jitter. An investigation of the PNR SSPD’s detection efficiency for multiphoton events shows good uniformity across sections. As a result, such a PNR SSPD is a good candidate for retrieving the photon statistics for light sources and quantum key distribution systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0740-3224 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1225  
Permanent link to this record
 

 
Author Bandurin, Denis; Svintsov, Dmitry; Gayduchenko, Igor; Xu, Shuigang; Principi, Alessandro; Moskotin, Maksim; Tretyakov, Ivan; Yagodkin, Denis; Zhukov, Sergey; Taniguchi, Takashi; Watanabe, Kenji; Grigorieva, Irina; Polini, Marco; Goltsman, Gregory; Geim, Andre; Fedorov, Georgy url  openurl
  Title Resonant terahertz photoresponse and superlattice plasmons in graphene field-effect transistors Type Abstract
  Year 2019 Publication APS March Meeting Abbreviated Journal APS March Meeting  
  Volume Issue Pages (down) F14.015  
  Keywords  
  Abstract Plasmons, collective oscillations of electron systems, can couple light and electric current, and thus can be used to create compact photodetectors, radiation mixers, and spectrometers. Despite the effort, it has proven challenging to implement plasmonic devices operating at THz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically-tunable plasmons. In this talk, we will demonstrate plasmon-assisted resonant detection of THz radiation by antenna-coupled graphene FETs that act as both rectifying elements and plasmonic Fabry-Perot cavities amplifying the photoresponse. We will show that by varying the plasmon velocity using gate voltage, our detectors can be tuned between multiple resonant modes, a functionality that we apply to measure plasmons' wavelength and lifetime in graphene as well as to probe collective modes in its moire minibands. Our approach offers a convenient tool for further plasmonic research that is often difficult under non-ambient conditions and promises a viable route for various THz applications. We acknowledge Leverhulme Trust, Russian Science Foundation Grants N18-72-00234 and 17-72-30036, Russian Foundation for Basic Research No. 18-57-06001 and 16-29-03402.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1290  
Permanent link to this record
 

 
Author Chandrasekar, R.; Lapin, Z. J.; Nichols, A. S.; Braun, R. M.; Fountain, A. W. url  doi
openurl 
  Title Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: state-of-the-art and future outlooks Type Conference Article
  Year 2019 Publication Opt. Eng. Abbreviated Journal Opt. Eng.  
  Volume 58 Issue 02 Pages (down) 1  
  Keywords photonic integrated circuits, PIC, optical waveguides, defense applications  
  Abstract Photonic integrated circuits (PICs), the optical counterpart of traditional electronic integrated circuits, are paving the way toward truly portable and highly accurate biochemical sensors for Department of Defense (DoD)-relevant applications. We introduce the fundamentals of PIC-based biochemical sensing and describe common PIC sensor architectures developed to-date for single-identification and spectroscopic sensor classes. We discuss DoD investments in PIC research and summarize current challenges. We also provide future research directions likely required to realize widespread application of PIC-based biochemical sensors. These research directions include materials research to optimize sensor components for multiplexed sensing; engineering improvements to enhance the practicality of PIC-based devices for field use; and the use of synthetic biology techniques to design new selective receptors for chemical and biological agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-3286 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1346  
Permanent link to this record
 

 
Author Polyakova, M.; Semenov, A. V.; Kovalyuk, V.; Ferrari, S.; Pernice, W. H. P.; Gol'tsman, G. N. url  doi
openurl 
  Title Protocol of measuring hot-spot correlation length for SNSPDs with near-unity detection efficiency Type Journal Article
  Year 2019 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 29 Issue 5 Pages (down) 1-5  
  Keywords SSPD, waveguide-integrated SNSPD, hot-spot interaction length  
  Abstract We present a simple quantum detector tomography protocol, which allows, without ambiguities, to measure the two-spot detection efficiency and extract the hot-spot interaction length of superconducting nanowire single photon detectors (SNSPDs) with unity intrinsic detection efficiency. We identify a significant parasitic contribution to the measured two-spot efficiency, related to an effect of the bias circuit, and find a way to rule out this contribution during data post-processing and directly in the experiment. From the data analysis for waveguide-integrated SNSPD, we find signatures of the saturation of the two-spot efficiency and hot-spot interaction length of order of 100 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1187  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: