|
Record |
Links |
|
Author |
Chandrasekar, R.; Lapin, Z. J.; Nichols, A. S.; Braun, R. M.; Fountain, A. W. |
|
|
Title |
Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: state-of-the-art and future outlooks |
Type |
Conference Article |
|
Year |
2019 |
Publication |
Opt. Eng. |
Abbreviated Journal |
Opt. Eng. |
|
|
Volume |
58 |
Issue |
02 |
Pages |
1 |
|
|
Keywords |
photonic integrated circuits, PIC, optical waveguides, defense applications |
|
|
Abstract |
Photonic integrated circuits (PICs), the optical counterpart of traditional electronic integrated circuits, are paving the way toward truly portable and highly accurate biochemical sensors for Department of Defense (DoD)-relevant applications. We introduce the fundamentals of PIC-based biochemical sensing and describe common PIC sensor architectures developed to-date for single-identification and spectroscopic sensor classes. We discuss DoD investments in PIC research and summarize current challenges. We also provide future research directions likely required to realize widespread application of PIC-based biochemical sensors. These research directions include materials research to optimize sensor components for multiplexed sensing; engineering improvements to enhance the practicality of PIC-based devices for field use; and the use of synthetic biology techniques to design new selective receptors for chemical and biological agents. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0091-3286 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1346 |
|
Permanent link to this record |