|   | 
Details
   web
Records
Author Rasulova, G. K.; Pentin, I. V.; Goltsman, G. N.
Title Terahertz emission from a weakly-coupled GaAs/AlGaAs superlattice biased into three different modes of current self-oscillations Type Journal Article
Year 2019 Publication AIP Advances Abbreviated Journal AIP Advances
Volume 9 Issue (down) 10 Pages 105220
Keywords GaAs/AlGaAs superlattice, SL, NbN HEB
Abstract Radio-frequency modulated terahertz (THz) emission power from weakly-coupled GaAs/AlGaAs superlattice (SL) has been increased by parallel connection of several SL mesas. Each SL mesa is a self-oscillator with its own oscillation frequency and mode. In coupled non-identical SL mesas biased at different voltages within the hysteresis loop the chaotic, quasiperiodic and frequency-locked modes of self-oscillations of current arise. THz emission was detected when three connected in parallel SL mesas were biased into the frequency-locked and quasiperiodic modes of self-oscillations of current, while in the chaotic mode of those it falls to the noise level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1274
Permanent link to this record
 

 
Author Nikogosyan, A. S.; Martirosyan, R. M.; Hakhoumian, A. A.; Makaryan, A. H.; Tadevosyan, V. R.; Goltsman, G. N.; Antipov, S. V.
Title Effect of absorption on the efficiency of terahertz radiation generation in the metal waveguide partially filled with nonlinear crystal LiNbO3, DAST or ZnTe Type Journal Article
Year 2019 Publication J. Contemp. Phys. Abbreviated Journal J. Contemp. Phys.
Volume 54 Issue (down) 1 Pages 97-104
Keywords nonlinear crystal, THz, waveguide
Abstract The influence of terahertz (THz) radiation absorption on the efficiency of generation of coherent THz radiation in the system ‘nonlinear-optical crystal partially filling the cross section of a rectangular metal waveguide’ has been investigated. The efficiency of the nonlinear frequency conversion of optical laser radiation to the THz range depends on the loss in the system and the fulfillment of the phase-matching (FM) condition in a nonlinear crystal. The method of partially filling of a metal waveguide with a nonlinear optical crystal is used to ensure phase matching. The phase matching is achieved by numerical determination of the thickness of the nonlinear crystal, that is the degree of partial filling of the waveguide. The attenuation of THz radiation caused by losses both in the metal walls of the waveguide and in the crystal was studied, taking into account the dimension of the cross section of the waveguide, the degree of partial filling, and the dielectric constant of the crystal. It is shown that the partial filling of the waveguide with a nonlinear crystal results in an increase in the efficiency of generation of THz radiation by an order of magnitude, owing to the decrease in absorption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1068-3372 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1289
Permanent link to this record
 

 
Author Chandrasekar, R.; Lapin, Z. J.; Nichols, A. S.; Braun, R. M.; Fountain, A. W.
Title Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: state-of-the-art and future outlooks Type Conference Article
Year 2019 Publication Opt. Eng. Abbreviated Journal Opt. Eng.
Volume 58 Issue (down) 02 Pages 1
Keywords photonic integrated circuits, PIC, optical waveguides, defense applications
Abstract Photonic integrated circuits (PICs), the optical counterpart of traditional electronic integrated circuits, are paving the way toward truly portable and highly accurate biochemical sensors for Department of Defense (DoD)-relevant applications. We introduce the fundamentals of PIC-based biochemical sensing and describe common PIC sensor architectures developed to-date for single-identification and spectroscopic sensor classes. We discuss DoD investments in PIC research and summarize current challenges. We also provide future research directions likely required to realize widespread application of PIC-based biochemical sensors. These research directions include materials research to optimize sensor components for multiplexed sensing; engineering improvements to enhance the practicality of PIC-based devices for field use; and the use of synthetic biology techniques to design new selective receptors for chemical and biological agents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-3286 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1346
Permanent link to this record
 

 
Author Tretyakov, I.; Shurakov, A.; Perepelitsa, A.; Kaurova, N.; Svyatodukh, S.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G.
Title Silicon room temperature IR detectors coated with Ag2S quantum dots Type Conference Article
Year 2019 Publication Proc. IWQO Abbreviated Journal Proc. IWQO
Volume Issue (down) Pages 369-371
Keywords silicon detector, quantum dot, IR, surface states
Abstract For decades silicon has been the chief technological semiconducting material of modern microelectronics. Application of silicon detectors in optoelectronic devices are limited to the visible and near infrared ranges, due to their transparency for radiation with a wavelength higher than 1.1 μm. The expansion Si absorption towards longer wave lengths is a considerable interest to optoelectronic applications. In this work we present an elegant and effective solution to this problem using Ag2S quantum dots, creating impurity states in Si to cause sub-band gap photon absorption. The sensitivity of room temperature zero-bias Si_Ag2S detectors, which we obtained is 1011 cmHzW . Given the variety of QDs parameters such as: material, dimensions, our results open a path towards the future study and development of Si detectors for technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-5-89513-451-1 Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1154
Permanent link to this record
 

 
Author Komrakova, S.; Javadzade, J.; Vorobyov, V.; Bolshedvorskii, S.; Soshenko, V.; Akimov, A.; Kovalyuk, V.; Korneev, A.; Goltsman, G.
Title CMOS compatible nanoantenna-nanodiamond integration Type Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue (down) Pages 012180
Keywords bull-eye antenna, hyperbolic metamaterials, NV-centers
Abstract Here we demonstrate CMOS compatible method to deterministically produce nanoantenna with nanodiamonds systems on example of bull-eye antenna on top of on hyperbolic metamaterials. We study the statistics of the placement of nanodiamonds and measure the fluorescence lifetime and the second-order correlation function of NV-centers inside nanodiamonds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1182
Permanent link to this record