|   | 
Details
   web
Records
Author Semenov, A. D.; Sergeev, A. V.; Kouminov, P.; Goghidze, I. G.; Heusinger, M. A.; Nebosis, R. S.; Gol'tsman, G. N.; Gershenzon, E. M.; Renk, K. F.
Title Transparency of YBCO film/substrate interfaces for thermal phonons determined by photoresponse measurements Type Conference Article
Year 1993 Publication Proc. 1st European Conf. on Appl. Supercond. Abbreviated Journal Proc. 1st European Conf. on Appl. Supercond.
Volume 2 Issue Pages 1443-1446
Keywords YBCO HTS detectors
Abstract (up) Direct measurements of the thermal boundary resistance were performed by means of the stationary method. In this approach the temperature of an electrically heated film is controlled by its dc resistance while an additional film on the same substrate is used as a thermometer monitoring substrate temperature. The temperature field in the substrate is then calculated to deduce the Kapitza temperature step at the interface between the heated strip and the substrate. The main statement of all afore-said papers is that experimental values of the thermal boundary resistance are too large to be explained by the acoustic mismatch model. In this paper we investigate transparency of YBaCuO film/substrate interfaces for thermal phonons by means of photoresponse measurements. We show that our data are in reasonable agreement with the acoustic mismatch theory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Freyhardt, H. C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 3-88355-197-X Medium
Area Expedition Conference 1st European conference on applied superconductivity
Notes Approved no
Call Number Serial 1661
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Zhang, J.; Verevkin, A.; Sobolewski, R.
Title Fabrication of nanostructured superconducting single-photon detectors Type Journal Article
Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 13 Issue 2 Pages 192-195
Keywords NbN SSPD, SNSPD
Abstract (up) Fabrication of NbN superconducting single-photon detectors, based on the hotspot effect is presented. The hotspot formation arises in an ultrathin and submicrometer-width superconductor stripe and, together with the supercurrent redistribution, leads to the resistive detector response upon absorption of a photon. The detector has a meander structure to maximally increase its active area and reach the highest detection efficiency. Main processing steps, leading to efficient devices, sensitive in 0.4-5 /spl mu/m wavelength range, are presented. The impact of various processing steps on the performance and operational parameters of our detectors is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1515
Permanent link to this record
 

 
Author Ryabchun, S.; Korneev, A.; Matvienko, V.; Smirnov, K.; Kouminov, P.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol’tsman, G. N.
Title Superconducting single photon detectors array based on hot electron phenomena Type Conference Article
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 242-247
Keywords NbN SSPD arrays, SNSPD
Abstract (up) In this paper we propose to use time domain multiplexing for large format arrays of superconducting single photon detectors (SSPDs) of the terahertz, visible and infrared frequency ranges based on ultrathin superconducting NbN films. Effective realization of time domain multiplexing for SSPD arrays is possible due to a short electric pulse of the SSPD as response to radiation quantum absorption, picosecond jitter and extremely low noise equivalent power (NEP). We present experimental results of testing 2×2 arrays in the infrared waveband. The measured noise equivalent power in the infrared and expected for the terahertz waveband is 10 – 21 WHz -1/2 . The best quantum efficiency (QE) of SSPD is 50% at 1.3 µm wavelength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1493
Permanent link to this record
 

 
Author Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Wilsher, K.; Lo, W.; Okunev, O.; Korneev, A.; Kouminov, P.; Chulkova, G.; Gol’tsman, G. N.
Title A superconducting single-photon detector for CMOS IC probing Type Conference Article
Year 2003 Publication Proc. 16-th LEOS Abbreviated Journal Proc. 16-th LEOS
Volume 2 Issue Pages 602-603
Keywords NbN SSPD, SNSPD
Abstract (up) In this paper, a novel, time-resolved, NbN-based, superconducting single-photon detector (SSPD) has been developed for probing CMOS integrated circuits (ICs) using photon emission timing analysis (PETA).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003.
Notes Approved no
Call Number Serial 1510
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R.
Title Nano-structured superconducting single-photon detectors Type Journal Article
Year 2004 Publication Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Abbreviated Journal
Volume 520 Issue 1-3 Pages 527-529
Keywords NbN SSPD, SNSPD
Abstract (up) NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1495
Permanent link to this record
 

 
Author Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Lo, W.; Wilsher, K.
Title Infrared picosecond superconducting single-photon detectors for CMOS circuit testing Type Conference Article
Year 2003 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages Cmv4
Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Electron beam lithography; Infrared detectors; Infrared radiation; Quantum efficiency; Single photon detectors; Superconductors
Abstract (up) Novel, NbN superconducting single-photon detectors have been developed for ultrafast, high quantum efficiency detection of single quanta of infrared radiation. Our devices have been successfully implemented in a commercial VLSI CMOS circuit testing system.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference
Notes Approved no
Call Number Serial 1518
Permanent link to this record
 

 
Author Zhang, J.; Boiadjieva, N.; Chulkova, G.; Deslandes, H.; Gol'tsman, G. N.; Korneev, A.; Kouminov, P.; Leibowitz, M.; Lo, W.; Malinsky, R.; Okunev, O.; Pearlman, A.; Slysz, W.; Smirnov, K.; Tsao, C.; Verevkin, A.; Voronov, B.; Wilsher, K.; Sobolewski, R.
Title Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors Type Journal Article
Year 2003 Publication Electron. Lett. Abbreviated Journal Electron. Lett.
Volume 39 Issue 14 Pages 1086-1088
Keywords NbN SSPD, SNSPD, applications
Abstract (up) The 3.5 nm thick-film, meander-structured NbN superconducting single-photon detectors have been implemented in the CMOS circuit-testing system based on the detection of near-infrared photon emission from switching transistors and have significantly improved the performance of the system. Photon emissions from both p- and n-MOS transistors have been observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-5194 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1512
Permanent link to this record
 

 
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R.
Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 51 Issue 9-10 Pages 1447-1458
Keywords NbN SSPD, SNSPD
Abstract (up) The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1488
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Kouminov, P. B.; Goghidze, I. G.; Karasik, B. S.; Gershenzon, E. M.
Title Nonbolometric and fast bolometric responses of YBaCuO thin films in superconducting, resistive, and normal states Type Conference Article
Year 1994 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 2159 Issue Pages 81-86
Keywords YBCO HTS HEB, nonbolornetric
Abstract (up) The transient voltage response in both epitaxial and granular YBaCuO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 micrometers and 1.54 micrometers was studied. In normal and resistive states both types of films demonstrate two components: nonequilibrium picosecond component and following bolometric nanosecond. The normalized amplitudes are almost the same for all films. In superconducting state we observed a kinetic inductive response and two-component shape after integration. The normalized amplitude of the response in granular films is up to several orders of magnitude larger than in epitaxial films. We interpret the nonequilibrium response in terms of a suppression of order parameter by the excess of quasiparticles followed by the change of resistance in normal and resistive states or kinetic inductance in superconducting state. The sharp rise of inductive response in granular films is explained both by a diminishing of the crossection for current percolation through the disordered network os Josephson weak links and by a decrease of condensate density in neighboring regions.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Nahum, M.; Villegier, J.-C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference High-Temperature Superconducting Detectors: Bolometric and Nonbolometric
Notes Approved no
Call Number Serial 1641
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Goghidze, I. G.; Kouminov, P. B.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M.
Title Influence of grain boundary weak links on the nonequilibrium response of YBaCuO thin films to short laser pulses Type Journal Article
Year 1994 Publication J. Supercond. Abbreviated Journal J. Supercond.
Volume 7 Issue 4 Pages 751-755
Keywords YBCO HTS detector, nonequilibrium response
Abstract (up) The transient voltage response in both epitaxial and granular YBaCuO thin films to 80 ps pulses of YAG∶Nd laser radiation of wavelength 0.63 and 1.54 μm was studied. In the normal and resistive states both types of films demonstrate two components: a nonequilibrium picosecond component and a bolometric nanosecond one. The normalized amplitudes are almost the same for all films. In the superconducting state we observed a kinetic inductive response and two-component shape after integration. The normalized amplitude of the response in granular films is up to five orders of magnitude larger than in epitaxial films. We interpret the nonequilibrium response in terms of a suppression of the order parameter by the excess of quasiparticles followed by the change of resistance in the normal and resistive states or kinetic inductance in the superconducting state. The sharp rise of inductive response in granular films is explained both by a diminishing of the cross section for current percolation through the disordered network of Josephson weak links and by a decrease of condensate density in neighboring regions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0896-1107 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1636
Permanent link to this record