toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Beck, M., Klammer, M., Rousseau, I., Gol’tsman, G. N., Diamant, I., Dagan, Y., et al. (2015). Probing superconducting gap dynamics with THz pulses. In CLEO (SM3H.3 (1 to 2)). Optical Society of America.
toggle visibility
Betz, A. L., Johnson, M. A., McLaren, R. A., & Sutton, E. C. (1976). Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus. Astrophys. J., 208, L141–L144.
toggle visibility
Doi, Y., Wang, Z., Ueda, T., Nickels, P., Komiyama, S., Patrashin, M., et al. (2009). CSIP – a novel photon-counting detector applicable for the SPICA far-infrared instrument. SPICA, (SPICA Workshop 2009).
toggle visibility
Ferrari, S., Kovalyuk, V., Hartmann, W., Vetter, A., Kahl, O., Lee, C., et al. (2017). Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors. Opt. Express, 25(8), 8739–8750.
toggle visibility
Gershenson, M. E., Gong, D., Sato, T., Karasik, B. S., & Sergeev, A. V. (2001). Millisecond electron-phonon relaxation in ultrathin disordered metal films at millikelvin temperatures. Appl. Phys. Lett., 79, 2049–2051.
toggle visibility
González, F. J., & Boreman, G. D. (2005). Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Inf Phys & Technol, 46(5), 418–428.
toggle visibility
Johnson, M. A., Betz, A. L., McLaren, R. A., Townes, C. H., & Sutton, E. C. (1976). Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus. A&A, 208, 145.
toggle visibility
Käufl, H. U., Rothermal, H., & Drapatz, S. (1984). Investigation of the Martian atmosphere by 10 micron heterodyne spectroscopy. A&A, 136, 319–325.
toggle visibility
Kawakami, A., Saito, S., & Hyodo, M. (2011). Fabrication of nano-antennas for superconducting Infrared detectors. IEEE Trans. Appl. Supercond., 21(3), 632–635.
toggle visibility
Korneev, A., Divochiy, A., Marsili, F., Bitauld, D., Fiore, A., Seleznev, V., et al. (2008). Superconducting photon number resolving counter for near infrared applications. In P. Tománek, D. Senderáková, & M. Hrabovský (Eds.), Proc. SPIE (Vol. 7138, 713828 (1 to 5)). Spie.
toggle visibility
Korneev, A., Minaeva, O., Divochiy, A., Antipov, A., Kaurova, N., Seleznev, V., et al. (2007). Ultrafast and high quantum efficiency large-area superconducting single-photon detectors. In M. Dusek, M. S. Hillery, W. P. Schleich, I. Prochazka, A. L. Migdall, & A. Pauchard (Eds.), Proc. SPIE (Vol. 6583, 65830I (1 to 9)). Spie.
toggle visibility
Krasnopolsky, V. A., Maillard, J. P., & C. Owen, T. (2004). Detection of methane in the martian atmosphere: evidence for life? Icarus, 172(2), 537–547.
toggle visibility
Lobanov, Y., Shcherbatenko, M., Shurakov, A., Rodin, A. V., Klimchuk, A., Nadezhdinsky, A. I., et al. (2014). Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer. Opt. Lett., 39(6), 1429–1432.
toggle visibility
Marsili, F., Bitauld, D., Divochiy, A., Gaggero, A., Leoni, R., Mattioli, F., et al. (2008). Superconducting nanowire photon number resolving detector at telecom wavelength. In CLEO/QELS (Qmj1 (1 to 2)). Optical Society of America.
toggle visibility
Mitin, V., Antipov, A., Sergeev, A., Vagidov, N., Eason, D., & Strasser, G. (2011). Quantum Dot Infrared Photodetectors: Photoresponse Enhancement Due to Potential Barriers. Nanoscale res lett, 6(1), 6.
toggle visibility
Parrott, E. P. J., Zeitler, J. A., Fris<cc><152>c<cc><152>ic<cc><81>, T., Pepper, M., Jones, W., Day, G. M., et al. (2009). Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals. Crystal Growth & Design, 9(3), 1452–1460.
toggle visibility
Pyatkov, F., Khasminskaya, S., Kovalyuk, V., Hennrich, F., Kappes, M. M., Goltsman, G. N., et al. (2017). Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers. Beilstein J. Nanotechnol., 8, 38–44.
toggle visibility
Rothermel, H., Käufl, H. U., Schrey, U., & Drapatz, S. (1988). Thermal structure of the Martian mesosphere. A&A, 196, 296–300.
toggle visibility
Rothermel, H., Käufl, H. U., & Yu, Y. (1983). A heterodyne spectrometer for astronomical measurements at 10 micrometers. A&A, 126, 387–392.
toggle visibility
Slysz, W., Wegrzecki, M., Bar, J., Grabiec, P., Górska, M., Latta, C., et al. (2005). Fiber-coupled quantum-communications receiver based on two NbN superconducting single-photon detectors. In A. Rogalski, E. L. Dereniak, & F. F. Sizov (Eds.), Proc. SPIE (Vol. 5957, 59571K (1 to 10)). SPIE.
toggle visibility
Soifer, B. T., & Pipher, J. L. (1978). Instrumentation for infrared astronomy. Annual Rev. Astron. Astrophys., 16(1), 335–369.
toggle visibility
Teich, M. C. (1968). Infrared heterodyne detection. In Proc. IEEE (Vol. 56, pp. 37–46). IEEE.
toggle visibility
Thiébeau, C., Courtois, D., Delahaigue, A., Corre, H., Mouanda, J. C., & Fayt, A. (1988). Dual-beam laser heterodyne spectrometer: Ethylene absorption spectrum in the 10 μm range. Appl. Phys. B, 47(4), 313–318.
toggle visibility
Tretyakov, I., Svyatodukh, S., Perepelitsa, A., Ryabchun, S., Kaurova, N., Shurakov, A., et al. (2020). Ag2S QDs/Si heterostructure-based ultrasensitive SWIR range detector. Nanomaterials (Basel), 10(5), 1–12.
toggle visibility
Verevkin, A., Slysz, W., Pearlman, A., Zhang, J., Sobolewski, R., Okunev, O., et al. (2003). Real-time GHz-rate counting of infrared photons using nanostructured NbN superconducting detectors. In CLEO/QELS (CThM8). Optical Society of America.
toggle visibility
Zhang, J., Pearlman, A., Slysz, W., Verevkin, A., Sobolewski, R., Okunev, O., et al. (2003). Infrared picosecond superconducting single-photon detectors for CMOS circuit testing. In CLEO/QELS (Cmv4). Optical Society of America.
toggle visibility
Масленников, С. Н. (2007). Смесители на эффекте электронного разогрева для терагерцового и инфракрасного диапазонов. Ph.D. thesis, , .
toggle visibility
Финкель, М. И. (2006). Терагерцовые смесители на эффекте электронного разогрева в ультратонких плёнках NbN и NbTiN. Ph.D. thesis, , .
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print