toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
  Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 51 Issue 9-10 Pages 1447-1458  
  Keywords NbN SSPD, SNSPD  
  Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1488  
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, Roman; Korneev, A.; Kouminov, P.; Okunev, O.; Chulkova, G.; Gol'tsman, G. url  openurl
  Title Ultimate sensitivity of superconducting single-photon detectors in the visible to infrared range Type Miscellaneous
  Year 2004 Publication ResearchGate Abbreviated Journal ResearchGate  
  Volume Issue Pages  
  Keywords NbN SSPD, SNSPD  
  Abstract We present our quantum efficiency (QE) and noise equivalent power (NEP) measurements of the meandertype ultrathin NbN superconducting single-photon detector in the visible to infrared radiation range. The nanostructured devices with 3.5-nm film thickness demonstrate QE up to~ 10% at 1.3–1.55 µm wavelength, and up to 20% in the entire visible range. The detectors are sensitive to infrared radiation with the wavelengths down to~ 10 µm. NEP of about 2× 10-18 W/Hz1/2 was obtained at 1.3 µm wavelength. Such high sensitivity together with GHz-range counting speed, make NbN photon counters very promising for efficient, ultrafast quantum communications and another applications. We discuss the origin of dark counts in our devices and their ultimate sensitivity in terms of the resistive fluctuations in our superconducting nanostructured devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Not attributed to any publisher! File name: PR9VervekinSfin_f.doc; Author: JAOLEARY; Last modification date: 2004-02-26 Approved no  
  Call Number Serial 1751  
Permanent link to this record
 

 
Author Vorobyov, V. V.; Kazakov, A. Y.; Soshenko, V. V.; Korneev, A. A.; Shalaginov, M. Y.; Bolshedvorskii, S. V.; Sorokin, V. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Voronov, B. M.; Shalaev, V. M.; Akimov, A. V.; Goltsman, G. N. url  doi
openurl 
  Title Superconducting detector for visible and near-infrared quantum emitters [Invited] Type Journal Article
  Year 2017 Publication Opt. Mater. Express Abbreviated Journal Opt. Mater. Express  
  Volume 7 Issue 2 Pages 513-526  
  Keywords SSPD, SNSPD  
  Abstract Further development of quantum emitter based communication and sensing applications intrinsically depends on the availability of robust single-photon detectors. Here, we demonstrate a new generation of superconducting single-photon detectors specifically optimized for the 500–1100 nm wavelength range, which overlaps with the emission spectrum of many interesting solid-state atom-like systems, such as nitrogen-vacancy and silicon-vacancy centers in diamond. The fabricated detectors have a wide dynamic range (up to 350 million counts per second), low dark count rate (down to 0.1 counts per second), excellent jitter (62 ps), and the possibility of on-chip integration with a quantum emitter. In addition to performance characterization, we tested the detectors in real experimental conditions involving nanodiamond nitrogen-vacancy emitters enhanced by a hyperbolic metamaterial.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-3930 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1234  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Kovalyuk, V.; Korneev, A.; Gol'tsman, G. N. url  openurl
  Title Photon counting detector as a mixer with picowatt local oscillator power requirement Type Conference Article
  Year 2016 Publication Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 27th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 110  
  Keywords SSPD mixer, SNSPD  
  Abstract At the current stage of the heterodyne receiver technology, great attention is paid to the development of detector arrays and matrices comprising many detectors on a single wafer. However, any traditional THz detector (such as SIS, HEB, or Schottky diode) requires quite a noticeable amount of Local Oscillator (LO) power which scales with the matrix size, and the total amount of the LO power needed is much greater than that available from compact and handy solid state sources. Substantial reduction of the LO power requirement may be obtained with a photon-counting detector used as a mixer. This approach, mentioned earlier in [1,2] provides a number of advantages. Thus, sensitivity of such a detector would be at the quantum limit (because of the photon-counting nature of the detector) and just a few LO photons for the mixing would be required leading to a possible breakthrough in the matrix receiver development. In addition, the receiver could be easily tuned from the heterodyne to the direct detection mode without any loss in its sensitivity with the latter limited only by the quantum efficiency of the detector used. We demonstrate such a technique with the use of the Superconducting Nanowire Single Photon Detector(SNSPD)[3] irradiated by both 1.5 μm LO with a tiny amount of power (from a few picowatts down to femtowatts) facing the detector, and the test signal with a power significantly less than that of the LO. The SNSPD was operated in the current mode and the bias current was slightly below its critical value. Irradiating the detector with either the LO or the signal source produced voltage pulses which are statistically evenly distributed and could be easily counted by a lab counter or oscilloscope. Irradiating the detector by the both lasers simultaneously produced pulses at the frequency f m which is the exact difference between the frequencies at which the two lasers operate. f m could be deduced form either counts statistics integrated over a sufficient time interval or with the help of an RF spectrum analyzer. In addition to the chip SNSPD with normal incidence coupling, we use the detectors with a travelling wave geometry design [4]. In this case a niobium nitride nanowire is placed on the top of a nanophotonic waveguide, thus increasing the efficient interaction length. Integrated device scheme allows us to measure the optical losses with high accuracy. Our approach is fully scalable and, along with a large number of devices integrated on a single chip can be adapted to the mid and far IR ranges. This work was supported in part by the Ministry of Education and Science of the Russian Federation, contract no. 14.B25.31.0007 and by RFBR grant # 16-32-00465. 1. Leaf A. Jiang and Jane X. Luu, ―Heterodyne detection with a weak local oscillator, Applied Optics Vol. 47, Issue 10, pp. 1486-1503 (2008) 2. Matsuo H. ―Requirements on Photon Counting Detectors for Terahertz Interferometry J Low Temp Phys (2012) 167:840–845 3. A. Semenov, G. Gol'tsman, A. Korneev, “Quantum detection by current carrying superconducting film”, Physica C, 352, pp. 349-356 (2001) 4. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, ―Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths., Sci. Rep., vol. 5, p. 10941, (2015).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1203  
Permanent link to this record
 

 
Author Tarkhov, M.; Morozov, D.; Mauskopf, P.; Seleznev, V.; Korneev, A.; Kaurova, N.; Rubtsova, I.; Minaeva, O.; Voronov, B.; Goltsman, G. url  openurl
  Title Single photon counting detector for THz radioastronomy Type Conference Article
  Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 119-122  
  Keywords NbN SSPD, SNSPD  
  Abstract In this paper we present the results of the research on the superconducting NbN-ultrathin-film single- photon detectors (SSPD) which are capable to detect single quanta in middle IR range. The detection mechanism is based on the hotspot formation in quasi-two-dimensional superconducting structures upon photon absorption. Spectral measurements showed that up to 5.7 gm wavelength (52 THz) the SSPD exhibits single-photon sensitivity. Reduction of operation temperature to 1.6 K allowed us to measure quantum efficiency of -4% at 60 THz. Although further decrease of the operation temperature far below 1 K does not lead to any significant increase of quantum efficiency. We expect that the improvement of the SSPD's performance at reduced operation temperature will make SSPD a practical detector with high characteristics for much lower THz frequencies as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1438  
Permanent link to this record
 

 
Author Gol'tsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Słysz, W.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, Roman url  openurl
  Title Superconducting nanostructured detectors capable of single-photon counting in the THz range Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 555-557  
  Keywords NbN SSPD, SNSPD  
  Abstract We present the results of the NbN superconducting single-photon detector sensitivity measurement in the visible to mid-IR range. For visible and near IR light (0.56 — 1.3μm wavelengths) the detector exhibits 30% quantum efficiency saturation value limited by the NbN film absorption and extremely low level of dark counts (2x10 -4 s -1). The detector manifested single-photon counting up to 6 μm wavelength with the quantum efficiency reaching 10 -2 % at 5.6 μm and 3 K temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1476  
Permanent link to this record
 

 
Author Ryabchun, S.; Korneev, A.; Matvienko, V.; Smirnov, K.; Kouminov, P.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol’tsman, G. N. url  openurl
  Title Superconducting single photon detectors array based on hot electron phenomena Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 242-247  
  Keywords NbN SSPD arrays, SNSPD  
  Abstract In this paper we propose to use time domain multiplexing for large format arrays of superconducting single photon detectors (SSPDs) of the terahertz, visible and infrared frequency ranges based on ultrathin superconducting NbN films. Effective realization of time domain multiplexing for SSPD arrays is possible due to a short electric pulse of the SSPD as response to radiation quantum absorption, picosecond jitter and extremely low noise equivalent power (NEP). We present experimental results of testing 2×2 arrays in the infrared waveband. The measured noise equivalent power in the infrared and expected for the terahertz waveband is 10 – 21 WHz -1/2 . The best quantum efficiency (QE) of SSPD is 50% at 1.3 µm wavelength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1493  
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Slysz, W.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smimov, K.; Gol'tsman, G. N. url  openurl
  Title Spectral sensitivity and temporal resolution of NbN superconducting single-photon detectors Type Conference Article
  Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 105-111  
  Keywords NbN SSPD, SNSPD  
  Abstract We report our studies on spectral sensitivity and time resolution of superconducting NbN thin film single-photon detectors (SPDs). Our SPDs exhibit an everimentally measured detection efficiencies (DE) from — 0.2% at 2=1550 nm up to —3% at lambda=405 nm wavelength for 10-nm film thickness devices and up to 3.5% at lambda=1550 nm for 3.5-nm film thickness devices. Spectral dependences of detection efficiency (DE) at 2=0.4 —3.0 pm range are presented. With variable optical delay setup, it is shown that NbN SPD potentially can resolve optical pulses with the repetition rate up to 10 GHz at least. The observed full width at the half maximum (FWHM) of the signal pulse is about 150-180 ps, limited by read-out electronics. The jitter of NbN SPD is measured to be —35 ps at optimum biasing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1528  
Permanent link to this record
 

 
Author Verevkin, A.; Xu, Y.; Zheng, X.; Williams, C.; Sobolewski, Roman; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol’tsman, G. N. url  openurl
  Title Superconducting NbN-based ultrafast hot-electron single-photon detector for infrared range Type Conference Article
  Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 462-468  
  Keywords NbN SSPD, SNSPD  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1539  
Permanent link to this record
 

 
Author Goltsman, G. N.; Shcherbatenko, M. L.; Lobanov, Y. V.; Kovalyuk, V. V.; Kahl, O.; Ferrari, S.; Korneev, A.; Pernice, W. H. P. url  openurl
  Title Superconducting nanowire single photon detector for coherent detection of weak optical signals Type Abstract
  Year 2016 Publication LPHYS'16 Abbreviated Journal LPHYS'16  
  Volume Issue Pages 1-2  
  Keywords SSPD, SNSPD  
  Abstract Traditionally, photon detectors are operated in a direct detection mode counting incident photonswith a known quantum efficiency. This procedure allows one to detect weak sources of radiation but allthe information about its frequency is limited by the optical filtering/resonating structures used which arenot as precise as would be required for some practical applications. In this work we propose heterodynereceiver based on a photon counting mixer which would combine excellent sensitivity of a photon countingdetector and excellent spectral resolution given by the heterodyne technique. At present, Superconducting-Nanowire-Single-Photon-Detectors (SNSPDs) [1] are widely used in a variety of applications providing thebest possible combination of the sensitivity and speed. SNSPDs demonstrate lack of drawbacks like highdark count rate or autopulsing, which are common for traditional semiconductor-based photon detectors,such as avalanche photon diodes.In our study we have investigated SNSPD operated as a photon counting mixer. To fully understandits behavior in such a regime, we have utilized experimental setup based on a couple of distributedfeedback lasers irradiating at 1.5 micrometers, one of which is being the Local Oscillator (LO) and theother mimics the test signal [2]. The SNSPD was operated in the current mode and the bias currentwas slightly below of the critical current. Advantageously, we have found that LO power needed for anoptimal mixing is of the order of hundreds of femtowatts to a few picowatts, which is promising for manypractical applications, such as receiver matrices [3]. With use of the two lasers, one can observe thevoltage pulses produced by the detected photons, and the time distribution of the pulses reproduces thefrequency difference between the lasers, forming power response at the intermediate frequency which canbe captured by either an oscilloscope (an analysis of the pulse statistics is needed) or by an RF spectrumanalyzer. Photon-counting nature of the detector ensures quantum-limited sensitivity with respect to theoptical coupling achieved. In addition to the chip SNSPD with normal incidence coupling, we use thedetectors with a travelling wave geometry design [4]. In this case a NbN nanowire is placed on the topof a Si3N4 nanophotonic waveguide, thus increasing the efficient interaction length. For this reason it ispossible to achieve almost complete absorption of photons and reduce the detector footprint. This reducesthe noise of the device together with the expansion of the bandwidth. Integrated device scheme allowsus to measure the optical losses with high accuracy. Our approach is fully scalable and, along with alarge number of devices integrated on a single chip can be adapted to the mid and far IR ranges wherephoton-counting measurement may be beneficial as well [5].Acknowledgements: This work was supported in part by the Ministry of Education and Science of theRussian Federation, contract No. 14.B25.31.0007 and by RFBR grant No. 16-32-00465.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1220  
Permanent link to this record
 

 
Author Korneeva, Y.; Vodolazov, D.; Florya, I.; Manova, N.; Smirnov, E.; Korneev, A.; Mikhailov, M.; Goltsman, G.; Klapwijk, T. M.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Single photon detection in micron scale NbN and α-MoSi superconducting strips Type Conference Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 190 Issue Pages 04010 (1 to 2)  
  Keywords SSPD  
  Abstract We experimentally demonstrate the single photon detection in straight micrometer-wide NbN and α-MoSi bridges. Width of the bridges is 2 µm, while the wavelength of the photon changes from 408 to 1550 nm and critical current exceeds 50% of the depairing current. Obtained results offer the alternative route for design of detectors without resonator and meander structure and indirectly confirm vortex assisted mechanism of single photon detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1319  
Permanent link to this record
 

 
Author Korneev, A.; Kovalyuk, V.; An, P.; Golikov, A.; Zubkova, E.; Ferrari, S.; Kahl, O.; Pernice, W.; Goltsman, G.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Superconducting single-photon detector for integrated waveguide spectrometer Type Conference Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 190 Issue Pages 04009  
  Keywords SSPD, SNSPD, Si3N4 waveguides, waveguide spectrometer  
  Abstract We present our recent achievements in the development of an on-chip spectrometer consisting of arrayed waveguide grating made of Si3N4 waveguides and NbN superconducting single-photon detector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1199  
Permanent link to this record
 

 
Author Zubkova, E.; An, P.; Kovalyuk, V.; Korneev, A.; Goltsman, G. url  openurl
  Title Integrated Bragg waveguides as an efficient optical notch filter on silicon nitride platform Type Conference Article
  Year 2017 Publication Proc. SPBOPEN Abbreviated Journal Proc. SPBOPEN  
  Volume Issue Pages 449-450  
  Keywords Bragg waveguides  
  Abstract We modeled and fabricated integrated optical Bragg waveguides on a silicon nitride (Si3N4) platform. Transmission spectra of the integrated notch filter has been measured and attenuation at the desired wavelength of 1550 nm down to -43 dB was observed.  
  Address St. Petersburg, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1141 Approved no  
  Call Number Serial 1257  
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol’tsman, G. url  openurl
  Title Superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
  Year 2008 Publication Supercond. News Forum Abbreviated Journal Supercond. News Forum  
  Volume Issue Pages  
  Keywords PNR SSPD, SNSPD  
  Abstract We present our latest generation of ultra-fast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). The novel SSPDs combine 10 μm x 10 μm active area with low kinetic inductance and PNR capability. That resulted in significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector’s response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performance of the PNR SSPDs. These detectors are perfectly suited for fibreless free-space telecommunications, as well as for ultra-fast quantum cryptography and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Reference No. ST34, paper # 012307, eventually not pulished (skipped) at https://iopscience.iop.org/issue/0953-2048/21/1 Approved no  
  Call Number RPLAB @ sasha @ korneevsuperconducting Serial 1046  
Permanent link to this record
 

 
Author Kitaygorsky, Jennifer; Komissarov, I.; Jukna, A.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R. url  openurl
  Title Fluctuations in two-dimensional superconducting NbN nanobridges and nanostructures meanders Type Abstract
  Year 2007 Publication Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting  
  Volume 52 Issue 1 Pages L9.00013  
  Keywords  
  Abstract We have observed fluctuations, manifested as sub-nanosecond to nanosecond transient, millivolt-amplitude voltage pulses, generated in two-dimensional NbN nanobridges, as well as in extended superconducting meander nanostructures, designed for single photon counting. Both nanobridges and nano-stripe meanders were biased at currents close to the critical current and measured in a range of temperatures from 1.5 to 8 K. During the tests, the devices were blocked from all incoming radiation by a metallic enclosure and shielded from any external magnetic fields. We attribute the observed spontaneous voltage pulses to the Kosterlitz-Thouless-type fluctuations, where the high enough applied bias current reduces the binding energy of vortex-antivortex pairs and, subsequently, thermal fluctuations break them apart causing the order parameter to momentarily reduce to zero, which in turn causes a transient voltage pulse. The duration of the voltage pulses depended on the device geometry (with the high-kinetic inductance meander structures having longer, nanosecond, pulses) while their rate was directly related to the biasing current as well as temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1027  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title NbN nanowire superconducting single-photon detector for mid-infrared Type Journal Article
  Year 2012 Publication Phys. Procedia Abbreviated Journal Phys. Procedia  
  Volume 36 Issue Pages 72-76  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting single-photon detectors (SSPD) is typically 100 nm-wide supercondiucting strip in a shape of meander made of 4-nm-thick film. To reduce response time and increase voltage response a parallel connection of the strips was proposed. Recently we demonstrated that reduction of the strip width improves the quantum effciency of such a detector at wavelengths longer than 1.5 μm. Being encourage by this progress in quantum effciency we improved the fabrication process and made parallel-wire SSPD with 40-nm-wide strips covering total area of 10 μm x 10 μm. In this paper we present the results of the characterization of such a parallel-wire SSPD at 10.6 μm wavelength and demonstrate linear dependence of the count rate on the light power as it should be in case of single-photon response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1875-3892 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1382  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R. url  doi
openurl 
  Title Nano-structured superconducting single-photon detectors Type Journal Article
  Year 2004 Publication Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Abbreviated Journal  
  Volume 520 Issue 1-3 Pages 527-529  
  Keywords NbN SSPD, SNSPD  
  Abstract NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1495  
Permanent link to this record
 

 
Author Korneev, A.; Lipatov, A.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title GHz counting rate NbN single-photon detector for IR diagnostics of VLSI CMOS circuits Type Journal Article
  Year 2003 Publication Microelectronic Engineering Abbreviated Journal Microelectronic Engineering  
  Volume 69 Issue 2-4 Pages 274-278  
  Keywords NbN SSPD, SNSPD, applications  
  Abstract We present a new, simple to manufacture superconducting single-photon detector operational in the range from ultraviolet to mid-infrared radiation wavelengths. The detector combines GHz counting rate, high quantum efficiency and very low level of dark (false) counts. At 1.3–1.5 μm wavelength range our detector exhibits a quantum efficiency of 5–10%. The detector photoresponse voltage pulse duration was measured to be about 150 ps with jitter of 35 ps and both of them were limited mostly by our measurement equipment. In terms of quantum efficiency, dark counts level, speed of operation the detector surpasses all semiconductor counterparts and was successfully applied for CMOS integrated circuits diagnostics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1511  
Permanent link to this record
 

 
Author Fiore, A.; Marsili, F.; Bitauld, D.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Gol’tsman, G. url  doi
openurl 
  Title Counting photons using a nanonetwork of superconducting wires Type Conference Article
  Year 2009 Publication Nano-Net Abbreviated Journal  
  Volume Issue Pages 120-122  
  Keywords SSPD, SNSPD  
  Abstract We show how the parallel connection of photo-sensitive superconducting nanowires can be used to count the number of photons in an optical pulse, down to the single-photon level. Using this principle we demonstrate photon-number resolving detectors with unprecedented sensitivity and speed at telecommunication wavelengths.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Berlin, Heidelberg Editor Cheng, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-3-642-02427-6 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 10.1007/978-3-642-02427-6_20 Serial 1242  
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N. url  doi
openurl 
  Title Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films Type Journal Article
  Year 2018 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 97 Issue 18 Pages 184512 (1 to 13)  
  Keywords WSi films, diffusion constant, SSPD, SNSPD  
  Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe−ph∼140–190 ps at TC=3.4K, supporting the results of earlier measurements by independent techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1305  
Permanent link to this record
 

 
Author Vodolazov, D. Y.; Korneeva, Y. P.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Vortex-assisted mechanism of photon counting in a superconducting nanowire single-photon detector revealed by external magnetic field Type Journal Article
  Year 2015 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 92 Issue 10 Pages 104503 (1 to 9)  
  Keywords SSPD, SNSPD  
  Abstract We use an external magnetic field to probe the detection mechanism of a superconducting nanowire single-photon detector. We argue that the hot belt model (which assumes partial suppression of the superconducting order parameter Δ across the whole width of the superconducting nanowire after absorption of the photon) does not explain observed weak-field dependence of the photon count rate (PCR) for photons with λ=450nm and noticeable decrease of PCR (with increasing the magnetic field) in a range of the currents for photons with wavelengths λ=450–1200nm. Found experimental results for all studied wavelengths can be explained by the vortex hot spot model (which assumes partial suppression of Δ in the area with size smaller than the width of the nanowire) if one takes into account nucleation and entrance of the vortices to the photon induced hot spot and their pinning by the hot spot with relatively large size and strongly suppressed Δ.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1343  
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Gol'tsman, G.; Hübers, H.-W. url  doi
openurl 
  Title Effect of magnetic field on the photon detection in thin superconducting meander structures Type Journal Article
  Year 2014 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 89 Issue 10 Pages 104513 (1 to 7)  
  Keywords NbN SSPD, SNSPD  
  Abstract We have studied the influence of an externally applied magnetic field on the photon and dark count rates of meander-type niobium nitride superconducting nanowire single-photon detectors. Measurements have been performed at a temperature of 4.2 K, and magnetic fields up to 250 mT have been applied perpendicularly to the meander plane. While photon count rates are field independent at weak applied fields, they show a strong dependence at fields starting from approximately ±25 mT. This behavior, as well as the magnetic field dependence of the dark count rates, is in good agreement with the recent theoretical model of vortex-assisted photon detection and spontaneous vortex crossing in narrow superconducting lines. However, the local reduction of the superconducting free energy due to photon absorption, which is the fitting parameter in the model, increases much slower with the photon energy than the model predicts. Furthermore, changes in the free-energy during photon counts and dark counts depend differently on the current that flows through the meander. This indicates that photon counts and dark counts occur in different parts of the meander.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1367  
Permanent link to this record
 

 
Author Peltonen, J. T.; Astafiev, O. V.; Korneeva, Y. P.; Voronov, B. M.; Korneev, A. A.; Charaev, I. M.; Semenov, A. V.; Golt'sman, G. N.; Ioffe, L. B.; Klapwijk, T. M.; Tsai, J. S. url  doi
openurl 
  Title Coherent flux tunneling through NbN nanowires Type Journal Article
  Year 2013 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 88 Issue 22 Pages 220506 (1 to 5)  
  Keywords NbN nanowires  
  Abstract We demonstrate evidence of coherent magnetic flux tunneling through superconducting nanowires patterned in a thin highly disordered NbN film. The phenomenon is revealed as a superposition of flux states in a fully metallic superconducting loop with the nanowire acting as an effective tunnel barrier for the magnetic flux, and reproducibly observed in different wires. The flux superposition achieved in the fully metallic NbN rings proves the universality of the phenomenon previously reported for InOx. We perform microwave spectroscopy and study the tunneling amplitude as a function of the wire width, compare the experimental results with theories, and estimate the parameters for existing theoretical models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1369  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M. url  doi
openurl 
  Title Optical single-photon detection in micrometer-scale NbN bridges Type Journal Article
  Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 9 Issue 6 Pages 064037 (1 to 13)  
  Keywords NbN SSPD, SNSPD  
  Abstract We demonstrate experimentally that single-photon detection can be achieved in micrometer-wide NbN bridges, with widths ranging from 0.53 to 5.15  μm and for photon wavelengths of 408 to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50% of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors, based on nanometer-scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modeling based on the theory of nonequilibrium superconductivity, including the vortex-assisted mechanism of initial dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1303  
Permanent link to this record
 

 
Author Vodolazov, D. Y.; Manova, N. N.; Korneeva, Y. P.; Korneev, A. A. url  doi
openurl 
  Title Timing jitter in NbN superconducting microstrip single-photon detector Type Journal Article
  Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 14 Issue 4 Pages 044041 (1 to 8)  
  Keywords NbN SSPD, SNSPD  
  Abstract We experimentally study timing jitter of single-photon detection by NbN superconducting strips with width w ranging from 190 nm to 3μm. We find that timing jitter of both narrow (190 nm) and micron-wide strips is about 40 ps at currents where internal detection efficiency η saturates and it is close to our instrumental jitter. We also calculate intrinsic timing jitter in wide strips using the modified time-dependent Ginzburg-Landau equation coupled with a two-temperature model. We find that with increasing width the intrinsic timing jitter increases and the effect is most considerable at currents where a rapid growth of η changes to saturation. We relate it with complicated vortex and antivortex dynamics, which depends on a photon’s absorption site across the strip and its width. The model also predicts that at current close to depairing current the intrinsic timing jitter of a wide strip could be about ℏ/kBTc (Tc is a critical temperature of superconductor), i.e., the same as for a narrow strip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1788  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Manova, N. N.; Florya, I. N.; Mikhailov, M. Y.; Dobrovolskiy, O. V.; Korneev, A. A.; Vodolazov, D. Y. url  doi
openurl 
  Title Different single-photon response of wide and narrow superconducting MoxSi1−x strips Type Journal Article
  Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 13 Issue 2 Pages 024011 (1 to 7)  
  Keywords MoSi SSPD, SNSPD  
  Abstract The photon count rate (PCR) of superconducting single-photon detectors made of MoxSi1−x films shaped as a 2-μm-wide strip and a 115-nm-wide meander strip line is studied experimentally as a function of the dc biasing current at different values of the perpendicular magnetic field. For the wide strip, a crossover current Icross is observed, below which the PCR increases with an increasing magnetic field and above which it decreases. This behavior contrasts with the narrow MoxSi1−x meander, for which no crossover current is observed, thus suggesting different photon-detection mechanisms in the wide and narrow strips. Namely, we argue that in the wide strip the absorbed photon destroys superconductivity locally via the vortex-antivortex mechanism for the emergence of resistance, while in the narrow meander superconductivity is destroyed across the whole strip line, forming a hot belt. Accordingly, the different photon-detection mechanisms associated with vortices and the hot belt determine the qualitative difference in the dependence of the PCR on the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1790  
Permanent link to this record
 

 
Author Baeva, E. M.; Sidorova, M. V.; Korneev, A. A.; Smirnov, K. V.; Divochy, A. V.; Morozov, P. V.; Zolotov, P. I.; Vakhtomin, Y. B.; Semenov, A. V.; Klapwijk, T. M.; Khrapai, V. S.; Goltsman, G. N. url  doi
openurl 
  Title Thermal properties of NbN single-photon detectors Type Journal Article
  Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 10 Issue 6 Pages 064063 (1 to 8)  
  Keywords NbN SSPD, SNSPD  
  Abstract We investigate thermal properties of a NbN single-photon detector capable of unit internal detection efficiency. Using an independent calibration of the coupling losses, we determine the absolute optical power absorbed by the NbN film and, via resistive superconductor thermometry, the temperature dependence of the thermal resistance Z(T) of the NbN film. In principle, this approach permits simultaneous measurement of the electron-phonon and phonon-escape contributions to the energy relaxation, which in our case is ambiguous because of the similar temperature dependencies. We analyze Z(T) with a two-temperature model and impose an upper bound on the ratio of electron and phonon heat capacities in NbN, which is surprisingly close to a recent theoretical lower bound for the same quantity in similar devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1226  
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol'tsman, G. url  doi
openurl 
  Title New advanced generation of superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
  Year 2008 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 97 Issue Pages 012307 (1 to 6)  
  Keywords PNR SSPD; SNSPD  
  Abstract We present our latest generation of ultrafast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). We have developed, fabricated and tested a multi-sectional design of NbN nanowire structures. The novel SSPD structures consist of several meander sections connected in parallel, each having a resistor connected in series. The novel SSPDs combine 10 μm × 10 μm active areas with a low kinetic inductance and PNR capability. That resulted in a significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector's response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performances of the PNR SSPDs. The PNR SSPDs are perfectly suited for fibreless free-space telecommunications, as well as for ultrafast quantum cryptography and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1245  
Permanent link to this record
 

 
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochiy, A.; Tarkhov, M.; Ryabchun, S.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol'tsman, G.; Polonsky, S. url  doi
openurl 
  Title Ultrathin NbN film superconducting single-photon detector array Type Conference Article
  Year 2007 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 61 Issue Pages 1081-1085  
  Keywords SSPD array  
  Abstract We report on the fabrication process of the 2 × 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 408  
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Rubtsova, I.; Seleznev, V.; Minaeva, O.; Chulkova, G.; Okunev, O.; Voronov, B.; Smirnov, K.; Gol'tsman, G.; Slysz, W.; Wegrzecki, M.; Guziewicz, M.; Bar, J.; Gorska, M.; Pearlman, A.; Kitaygorsky, J.; Cross, A.; Sobolewski, R. url  doi
openurl 
  Title Superconducting single-photon detectors designed for operation at 1.55-µm telecommunication wavelength Type Conference Article
  Year 2006 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 43 Issue Pages 1334-1337  
  Keywords NbN SSPD, SNSPD  
  Abstract We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ~30-40%, which is limited by the NbN film absorption. For the infrared range (1.55µm), QE is ~6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ~20% for 1.55-µm photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 µm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 µm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55-µm wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ~1% system QE for 1.55 µm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1450  
Permanent link to this record
 

 
Author Dryazgov, M.; Semenov, A.; Manova, N.; Korneeva, Y.; Korneev, A. url  doi
openurl 
  Title Modelling of normal domain evolution after single-photon absorption of a superconducting strip of micron width Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012195 (1 to 4)  
  Keywords SSPD modelling, SNSPD  
  Abstract The present paper describes a modelling of normal domain evolution in superconducting strip of micron width using solving differential equations describing the temperature and current changes. The solving results are compared with experimental data. This comparison demonstrates the high accuracy of the model. In future, it is possible to employ this model for improvement of single photon detector based on micron-scale superconducting strips.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1785  
Permanent link to this record
 

 
Author Polyakova, M. I.; Korneev, A. A.; Semenov, A. V. url  doi
openurl 
  Title Comparison single- and double- spot detection efficiencies of SSPD based to MoSi and NbN films Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012146 (1 to 3)  
  Keywords NbN SSPD, SNSPD, MoSi  
  Abstract In this work, we present results of quantum detector tomography of superconducting single photon detector (SSPD) based on MoSi film, and compare them with previously reported data on NbN. We find that for both materials hot spot interaction length coincides with the strip width, and the dependence of single and double-spot detection efficiencies on bias current are compatible with sufficiently large hot-spot size, approaching the strip width.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1787  
Permanent link to this record
 

 
Author Simonov, N. O.; Korneeva, Y. P.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Enhance of the superconducting properties of the NbN/Au bilayer bridges Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012132 (1 to 4)  
  Keywords SSPD, SNSPD  
  Abstract We experimentally demonstrate strong temperature dependence of the critical current of the superconducting 600-nm-wide and 5-μm-long bridge made of NbN/Au bilayer. The result is achieved due to the proximity effect realized between the highly disordered superconducting NbN layer and low resistive normal-metal Au layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1263  
Permanent link to this record
 

 
Author Manova, N. N.; Simonov, N. O.; Korneeva, Y. P.; Korneev, A. A. url  doi
openurl 
  Title Developing of NbN films for superconducting microstrip single-photon detector Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012116 (1 to 5)  
  Keywords NbN SSPD, SNSPD, NbN films  
  Abstract We optimized NbN films on a Si substrate with a buffer SiO2 layer to produce superconducting microstrip single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current. We varied thickness of films and observed the maximum QE saturation for device based on the thinner film with the lowest ratio RS300/RS20.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1786  
Permanent link to this record
 

 
Author Komrakova, S.; Javadzade, J.; Vorobyov, V.; Bolshedvorskii, S.; Soshenko, V.; Akimov, A.; Kovalyuk, V.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title CMOS compatible nanoantenna-nanodiamond integration Type Conference Article
  Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1410 Issue Pages 012180  
  Keywords bull-eye antenna, hyperbolic metamaterials, NV-centers  
  Abstract Here we demonstrate CMOS compatible method to deterministically produce nanoantenna with nanodiamonds systems on example of bull-eye antenna on top of on hyperbolic metamaterials. We study the statistics of the placement of nanodiamonds and measure the fluorescence lifetime and the second-order correlation function of NV-centers inside nanodiamonds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1182  
Permanent link to this record
 

 
Author Zubkova, E.; Golikov, A.; An, P.; Kovalyuk, V.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G. url  doi
openurl 
  Title CWDM demultiplexer using anti-reflection, contra-directional couplers based on silicon nitride rib waveguide Type Conference Article
  Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1410 Issue Pages 012179  
  Keywords coarse wavelength-division multiplexing, Si3N4 rib waveguide  
  Abstract We report on the development and fabrication of a 9-channel coarse wavelength-division multiplexing for telecommunication wavelengths (1550 nm) using anti-reflection contra-directional couplers, based on silicon nitride (Si3N4) rib waveguide. The transmitted and reflected spectrum in each channel of the demultiplexer were measured. The average full width at half maximum of the transmitted (reflected) spectra is about 3 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1183  
Permanent link to this record
 

 
Author Polyakova, M. I.; Florya, I. N.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Extracting hot-spot correlation length from SNSPD tomography data Type Conference Article
  Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1410 Issue Pages 012166 (1 to 4)  
  Keywords SSPD, SNSPD, quantum detector tomography, QDT  
  Abstract We present data of quantum detector tomography for the samples specifically optimized for this problem. Using this method, we take results of hot-spot correlation length of 17 ± 2 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1273  
Permanent link to this record
 

 
Author Manova, N. N.; Smirnov, E. O.; Korneeva, Yu. P.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Superconducting photon counter for nanophotonics applications Type Conference Article
  Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1410 Issue Pages 012147 (1 to 5)  
  Keywords SSPD, SNSPD  
  Abstract We develop large area superconducting single-photon detector SSPD with a micron-wide strip suitable for free-space coupling or packaging with multi-mode optical fibres. The detector sensitive area is 20 μm in diameter. In near infrared (1330 nm wavelength) our SSPD exhibits above 30% detection efficiency with low dark counts and 45 ps timing jitter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1271  
Permanent link to this record
 

 
Author Prokhodtsov, A.; An, P.; Kovalyuk, V.; Zubkova, E.; Golikov, A.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G. url  doi
openurl 
  Title Optimization of on-chip photonic delay lines for telecom wavelengths Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051052  
  Keywords optical delay lines  
  Abstract In this work, we experimentally studied optical delay lines on silicon nitride platform for telecomm wavelength (1550 nm). We modeled the group delay time and fabricated spiral optical delay lines with different waveguide widths and radii as well as measured their transmission. For the half etched rib waveguides we achieved the losses in the range of 3 dB/cm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1196  
Permanent link to this record
 

 
Author Golikov, A.; Kovalyuk, V.; An, P.; Zubkova, E.; Ferrari, S.; Pernice, W.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title Silicon nitride nanophotonic circuit for on-chip spontaneous four-wave mixing Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051051  
  Keywords O-ring resonator  
  Abstract Here we present an integrated nanophotonic circuit for on-chip spontaneous four-wave mixing. The fabricated device includes an O-ring resonator, a Bragg noch-filter as well as a nine-channel arrayed waveguide gratings (AWG) operated in the C-band wavelength range (1550 nm). The measured optical losses of the device (-6.8 dB) as well as a high Q-factor (> 1.2×105) shows a good potential for realizing the spontaneous four-wave mixing on the silicon nitride chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1193  
Permanent link to this record
 

 
Author Zubkova, E.; An, P.; Kovalyuk, V.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G. url  doi
openurl 
  Title Optimization of contra-directional coupler based on silicon nitride Bragg rib waveguide Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051048  
  Keywords Bragg waveguide, Si3N4  
  Abstract We report on the development and fabrication of a contra-directional coupler based on the Bragg waveguide on Si3N4 platform. Transmitted and reflected by the contra-directional coupler spectra were measured. The reflected spectra exactly matches the one notched by the main channel of the coupler. Losses are about 3dB, coupling to the directing branch of the coupler is practically lossless. FWHM of the transmitted (reflected) spectra is 3.46 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1195  
Permanent link to this record
 

 
Author An, P.; Kovalyuk, V.; Golikov, A.; Zubkova, E.; Ferrari, S.; Korneev, A.; Pernice, W.; Goltsman, G. url  doi
openurl 
  Title Experimental optimisation of O-ring resonator Q-factor for on-chip spontaneous four wave mixing Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051047  
  Keywords planar O-ring resonators, Q-factor  
  Abstract In this paper we experimentally studied the influence of geometrical parameters of the planar O-ring resonators on its Q-factor and losses. We systematically changed the gap between the bus waveguide and the ring, as well as the width of the ring. We found the highest Q = 5×105 for gap 2.0 μm and the ring width 2 μm. This work is important for further on-chip SFWM applications since the generation rate of the biphoton field strongly depends on the quality factor as Q3  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1191  
Permanent link to this record
 

 
Author Komrakova, S.; Javadzade, J.; Vorobyov, V.; Bolshedvorskii, S.; Soshenko, V.; Akimov, A.; Kovalyuk, V.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title On-chip controlled placement of nanodiamonds with a nitrogen-vacancy color centers (NV) Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051046 (1 to 4)  
  Keywords nanodiamonds, NV-centers  
  Abstract Here we studied the fabrication technique of a kilopixel array of nanodiamonds with a nitrogen-vacancy color centers (NV) on top of the chip and measured the second-order correlation function deep, clearly demonstrated the presence of single-photon sources. The controlled position of nanodiamonds, determined from the measurement of second-order correlation fiction, was realize, as well as the yield of optimized technique equals 12.5% is shown.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1298  
Permanent link to this record
 

 
Author Kovalyuk, V.; Kahl, O.; Ferrari, S.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. url  doi
openurl 
  Title On-chip single-photon spectrometer for visible and infrared wavelength range Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051045  
  Keywords single-photon spectrometer  
  Abstract Here we show our latest progress in the field of a single-photon spectrometer for the visible and infrared wavelengths ranges implementation. We consider three different on-chip approaches: a coherent spectrometer with a low power of the heterodyne, a coherent spectrometer with a high power of the heterodyne, and an eight-channel single-photon spectrometer for direct detection. Along with high efficiency, spectrometers show high detection efficiency and temporal resolution through the use of waveguide integrated superconducting nanowire single-photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1197  
Permanent link to this record
 

 
Author Smirnov, E.; Golikov, A.; Zolotov, P.; Kovalyuk, V.; Lobino, M.; Voronov, B.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title Superconducting nanowire single-photon detector on lithium niobate Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051025  
  Keywords SSPD, SNSPD, lithium niobate, LN  
  Abstract We demonstrate superconducting niobium nitride nanowires folded on top of lithium niobate substrate. We report of 6% system detection efficiency at 20 s−1 dark count rate at telecommunication wavelength (1550 nm). Our results shown great potential for the use of NbN nanowires in the field of linear and nonlinear integrated quantum photonics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1194  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Manova, N. N.; Dryazgov, M. A.; Simonov, N. O.; Zolotov, P. I.; Korneev, A. A. url  doi
openurl 
  Title Influence of sheet resistance and strip width on the detection efficiency saturation in micron-wide superconducting strips and large-area meanders Type Journal Article
  Year 2021 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 34 Issue 8 Pages 084001  
  Keywords NbN SSPD, SMSPD  
  Abstract We report our study of detection efficiency (DE) saturation in wavelength range 400 – 1550 nm for the NbN Superconducting Microstrip Single-Photon Detectors (SMSPD) featuring the strip width up to 3 μm. We observe an expected decrease of the $DE$ saturation plateau with the increase of photon wavelength and decrease of film sheet resistance. At 1.7 K temperature DE saturation can be clearly observed at 1550 nm wavelength in strip with the width up to 2 μm when sheet resistance of the film is above 630Ω/sq. In such strips the length of the saturation plateau almost does not depend on the strip width. We used these films to make meander-shaped detectors with the light sensitive area from 20×20μm2 to a circle 50 μm in diameter. In the latter case, the detector with the strip width of 0.49 μm demonstrates saturation of DE up to 1064 nm wavelength. Although DE at 1310 and 1550 nm is not saturated, it is as high as 60%. The response time is limited by the kinetic inductance and equals to 20 ns(by 1/e decay), timing jitter is 44 ps. When coupled to multi-mode fibre large-area meanders demonstrate significantly higher dark count rate which we attribute to thermal background photons, thus advanced filtering technique would be required for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1793  
Permanent link to this record
 

 
Author Lipatov, A.; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Kouminov, P.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title An ultrafast NbN hot-electron single-photon detector for electronic applications Type Journal Article
  Year 2002 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 15 Issue 12 Pages 1689-1692  
  Keywords NbN SSPD, SNSPD, QE, jitter, dark counts  
  Abstract We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1533  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Semenov, A.; Goltsman, G. url  doi
openurl 
  Title Photon switching statistics in multistrip superconducting single-photon detectors Type Journal Article
  Year 2018 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 28 Issue 7 Pages 1-4  
  Keywords SSPD, SNSPD  
  Abstract We study photon count statistics in superconducting single-photon detectors consisting of up to 70 narrow superconducting strips connected in parallel. Using interarrival time analysis, we demonstrate that our samples are operated in the “arm-trigger” regime and require up to seven subsequently absorbed photons to form a resistive state in the whole sample. We also performed numerical simulation of the light and dark count rates versus detector bias current, which are in good agreement with the experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1304  
Permanent link to this record
 

 
Author Reiger, E.; Pan, D.; Slysz, W.; Jukna, A.; Sobolewski, R.; Dorenbos, S.; Zwiller, V.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Minaeva, O.; Gol'tsman, G.; Kitaygorsky, J. url  doi
openurl 
  Title Spectroscopy with nanostructured superconducting single photon detectors Type Journal Article
  Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.  
  Volume 13 Issue 4 Pages 934-943  
  Keywords SSPD, SNSPD  
  Abstract Superconducting single-photon detectors (SSPDs) are nanostructured devices made from ultrathin superconducting films. They are typically operated at liquid helium temperature and exhibit high detection efficiency, in combination with very low dark counts, fast response time, and extremely low timing jitter, within a broad wavelength range from ultraviolet to mid-infrared (up to 6 mu m). SSPDs are very attractive for applications such as fiber-based telecommunication, where single-photon sensitivity and high photon-counting rates are required. We review the current state-of-the-art in the SSPD research and development, and compare the SSPD performance to the best semiconducting avalanche photodiodes and other superconducting photon detectors. Furthermore, we demonstrate that SSPDs can also be successfully implemented in photon-energy-resolving experiments. Our approach is based on the fact that the size of the hotspot, a nonsuperconducting region generated upon photon absorption, is linearly dependent on the photon energy. We introduce a statistical method, where, by measuring the SSPD system detection efficiency at different bias currents, we are able to resolve the wavelength of the incident photons with a resolution of 50 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-260X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1424  
Permanent link to this record
 

 
Author Korneev, A.; Semenov, A.; Vodolazov, D.; Gol’tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Physics and operation of superconducting single-photon devices Type Book Chapter
  Year 2017 Publication Superconductors at the Nanoscale Abbreviated Journal  
  Volume Issue Pages 279-308  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher De Gruyter Place of Publication Editor Wördenweber, R.; Moshchalkov, V.; Bending, S.; Tafuri, F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1326  
Permanent link to this record
 

 
Author Manova, N. N.; Korneeva, Yu. P.; Korneev, A. A.; Slysz, W.; Voronov, B. M.; Gol'tsman, G. N. url  doi
openurl 
  Title Superconducting NbN single-photon detector integrated with quarter-wave resonator Type Journal Article
  Year 2011 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume 37 Issue 5 Pages 469-471  
  Keywords SSPD, SNSPD  
  Abstract The spectral dependence of the quantum efficiency of superconducting NbN single-photon detectors integrated with quarter-wave resonators based on Si3N4, SiO2, and SiO layers has been studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 664  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title Spectral sensitivity of narrow strip NbN superconducting single-photon detector Type Conference Article
  Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 8072 Issue Pages 80720G (1 to 9)  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting single-photon detector (SSPD) is patterned from 4-nm-thick NbN film deposited on sapphire substrate as a 100-nm-wide strip. Due to its high detection efficiency, low dark counts, and picosecond timing jitter SSPD has become a competitor to the InGaAs avalanche photodiodes at 1550 nm and longer wavelengths. Although the SSPD is operated at liquid helium temperature its efficient single-mode fibre coupling enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. In our strive to increase the detection efficiency at 1550 nm and longer wavelengths we developed and fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm. To increase the voltage response of the device we utilized cascade switching mechanism: we connected 50-nm-wide and 10-μm-long strips in parallel covering the area of 10 μmx10 μm. Absorption of a photon breaks the superconductivity in a strip leading to the bias current redistribution between other strips followed their cascade switching. As the total current of all the strips about is 1 mA by the order of magnitude the response voltage of such an SSPD is several times higher compared to the traditional meander-shaped SSPDs. In middle infrared (about 3 μm wavelength) these devices have the detection efficiency several times higher compared to the traditional SSPDs.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Fiurásek, J.; Prochazka, I.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing III  
  Notes Approved no  
  Call Number Serial 1387  
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Marsili, F.; Bitauld, D.; Fiore, A.; Seleznev, V.; Kaurova, N.; Tarkhov, M.; Minaeva, O.; Chulkova, G.; Smirnov, K.; Gaggero, A.; Leoni, R.; Mattioli, F.; Lagoudakis, K.; Benkhaoul, M.; Levy, F.; Goltsman, G. url  doi
openurl 
  Title Superconducting photon number resolving counter for near infrared applications Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7138 Issue Pages 713828 (1 to 5)  
  Keywords PNR SSPD; SNSPD; Nanowire superconducting single-photon detector, ultrathin NbN film, infrared  
  Abstract We present a novel concept of photon number resolving detector based on 120-nm-wide superconducting stripes made of 4-nm-thick NbN film and connected in parallel (PNR-SSPD). The detector consisting of 5 strips demonstrate a capability to resolve up to 4 photons absorbed simultaneously with the single-photon quantum efficiency of 2.5% and negligibly low dark count rate.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 10.1117/12.818079 Serial 1241  
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Y. B.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Fiber coupled single photon receivers based on superconducting detectors for quantum communications and quantum cryptography Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7138 Issue Pages 713827 (1 to 6)  
  Keywords SSPD, SNSPD, superconducting single photon detector, ultra-thin superconducting films, optical fiber coupling, ready to use receiver  
  Abstract At present superconducting detectors become increasingly attractive for various practical applications. In this paper we present results on the depelopment of fiber coupled receiver systems for the registration of IR single photons, optimized for telecommunication and quantum-cryptography. These receiver systems were developed on the basis of superconducting single photon detectors (SSPD) of VIS and IR wavelength ranges. The core of the SSPD is a narrow ( 100 nm) and long ( 0,5 mm) strip in the form of a meander which is patterned from a 4-nm-thick NbN film (TC=10-11 K, jC= 5-7•106 A/cm2); the sensitive area dimensions are 10×10 μm2. The main problem to be solved while the receiver system development was optical coupling of a single-mode fiber (9 microns in diameter) with the SSPD sensitive area. Characteristics of the developed system at the optical input are as follows: quantum efficiency >10 % (at 1.3 μm), >4 % (at 1.55 μm); dark counts rate ≤1 s-1; duration of voltage pulse ≤5 ns; jitter ≤40 ps. The receiver systems have either one or two identical channels (for the case of carrying out correlation measurements) and are made as an insert in a helium storage Dewar.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1405  
Permanent link to this record
 

 
Author Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, R. url  doi
openurl 
  Title Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7009 Issue Pages 70090V (1 to 8)  
  Keywords SSPD, SNSPD, single-photon detectors, superconductors, superconducting nanost  
  Abstract Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 μm2 in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 μm and 1.55 μm telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-heliumstorage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be < 1.5 ns and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is < 35 ps and their dark-count rate is below 1s-1. The presented performance parameters show that our single-photon receivers are fully applicable for quantum correlation-type QC systems, including practical quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Sukhoivanov, I.A.; Svich, V.A.; Shmaliy, Y.S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1413  
Permanent link to this record
 

 
Author Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Rieger, E.; Dorenbos, P.; Zwiller, V.; Milostnaya, I.; Minaeva, O.; Antipov, A.; Okunev, O.; Korneev, A.; Smirnov, K.; Voronov, B.; Kaurova, N.; Gol’tsman, G.N.; Kitaygorsky, J.; Pan, D.; Pearlman, A.; Cross, A.; Komissarov, I.; Sobolewski, R. url  doi
openurl 
  Title Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements Type Conference Article
  Year 2007 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 6583 Issue Pages 65830J (1 to 11)  
  Keywords NbN SSPD, SNSPD, superconducting single-photon detectors, single-photon detectors, fiber-coupled optical detectors, quantum correlations, superconducting devices  
  Abstract We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured ( 100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast and efficient detection of visible to nearinfrared photons with almost negligible dark counts. Our latest devices are pigtailed structures with coupling between the SSPD structure and a single-mode optical fiber achieved using a micromechanical photoresist ring placed directly over the meander. The above arrangement withstands repetitive thermal cycling between liquid helium and room temperature, and we can reach the coupling efficiency of up to  33%. The system quantum efficiency, measured as the ratio of the photons counted by SSPD to the total number of photons coupled into the fiber, in our early devices was found to be around 0.3 % and 1% for 1.55 &mgr;m and 0.9 &mgr;m photon wavelengths, respectively. The photon counting rate exceeded 250 MHz. The receiver with two SSPDs, each individually biased, was placed inside a transport, 60-liter liquid helium Dewar, assuring uninterrupted operation for over 2 months. Since the receiver’s optical and electrical connections are at room temperature, the set-up is suitable for any applications, where single-photon counting capability and fast count rates are desired. In our case, it was implemented for photon correlation experiments. The receiver response time, measured as a second-order photon cross-correlation function, was found to be below 400 ps, with timing jitter of less than 40 ps.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Dusek, M.; Hillery, M.S.; Schleich, W.P.; Prochazka, I.; Migdall, A.L.; Pauchard, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Photon Counting Applications, Quantum Optics, and Quantum Cryptography  
  Notes Approved no  
  Call Number Serial 1431  
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Divochiy, A.; Antipov, A.; Kaurova, N.; Seleznev, V.; Voronov, B.; Gol’tsman, G.; Pan, D.; Kitaygorsky, J.; Slysz, W.; Sobolewski, R. url  doi
openurl 
  Title Ultrafast and high quantum efficiency large-area superconducting single-photon detectors Type Conference Article
  Year 2007 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 6583 Issue Pages 65830I (1 to 9)  
  Keywords SSPD, SNSPD, superconducting NbN films, infrared single-photon detectors  
  Abstract We present our latest generation of superconducting single-photon detectors (SSPDs) patterned from 4-nm-thick NbN films, as meander-shaped  0.5-mm-long and  100-nm-wide stripes. The SSPDs exhibit excellent performance parameters in the visible-to-near-infrared radiation wavelengths: quantum efficiency (QE) of our best devices approaches a saturation level of  30% even at 4.2 K (limited by the NbN film optical absorption) and dark counts as low as 2x10-4 Hz. The presented SSPDs were designed to maintain the QE of large-active-area devices, but, unless our earlier SSPDs, hampered by a significant kinetic inductance and a nanosecond response time, they are characterized by a low inductance and GHz counting rates. We have designed, simulated, and tested the structures consisting of several, connected in parallel, meander sections, each having a resistor connected in series. Such new, multi-element geometry led to a significant decrease of the device kinetic inductance without the decrease of its active area and QE. The presented improvement in the SSPD performance makes our detectors most attractive for high-speed quantum communications and quantum cryptography applications.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Dusek, M.; Hillery, M.S.; Schleich, W.P.; Prochazka, I.; Migdall, A.L.; Pauchard, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1249  
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Slepneva, S.; Seleznev, V.; Chulkova, G.; Okunev, O.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, R. url  doi
openurl 
  Title Superconducting nanostructured detectors capable of single photon counting of mid-infrared optical radiation Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5957 Issue Pages 59570A (1 to 9)  
  Keywords SSPD, SNSPD, single-photon detectors, superconductors, superconducting  
  Abstract We report on our progress in research and development of ultrafast superconducting single-photon detectors (SSPDs) based on ultrathin NbN nanostructures. Our SSPDs were made of the 4-nm-thick NbN films with Tc 11 K, patterned as meander-shaped, 100-nm-wide strips, and covering an area of 10×10 μm2. The detectors exploit a combined detection mechanism, where upon a single-photon absorption, a hotspot of excited electrons and redistribution of the biasing supercurrent, jointly produce a picosecond voltage transient signal across the superconducting nanostripe. The SSPDs are typically operated at 4.2 K, but their sensitivity in the infrared radiation range can be significantly improved by lowering the operating temperature from 4.2 K to 2 K. When operated at 2 K, the SSPD quantum efficiency (QE) for visible light photons reaches 30-40%, which is the saturation value limited by the optical absorption of our 4-nm-thick NbN film. With the wavelength increase of the incident photons,the QE of SSPDs decreases significantly, but even at the wavelength of 6 μm, the detector is able to count single photons and exhibits QE of about 10-2 %. The dark (false) count rate at 2 K is as low as 2x10-4 s,-1 which makes our detector essentially a background-limited sensor. The very low dark-count rate results in a noise equivalent power (NEP) below 10-18 WHz-1/2 for the mid-infrared range (6 μm). Further improvement of the SSPD performance in the mid-infrared range can be obtained by substituting NbN for another, lower-Tc materials with a narrow superconducting gap and low quasiparticles diffusivity. The use of such superconductors should shift the cutoff wavelength below 10 μm.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Rogalski, A.; Dereniak, E.L.; Sizov, F.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Photoelectronics  
  Notes Approved no  
  Call Number Serial 1458  
Permanent link to this record
 

 
Author Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Latta, C.; Zwiller, V.; Pearlman, A.; Cross, A.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Verevkin, A.; Currie, M.; Sobolewski, R. url  doi
openurl 
  Title Fiber-coupled quantum-communications receiver based on two NbN superconducting single-photon detectors Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5957 Issue Pages 59571K (1 to 10)  
  Keywords SSPD, SNSPD, single-photon detectors, quantum communication, quantum cryptography, superconductors, infrared optical detectors  
  Abstract We present the design and performance of a novel, two-channel single-photon receiver, based on two fiber-coupled NbN superconducting single-photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders covering an area of 100 μm2 and are known for ultrafast and efficient counting of single, visible-to-infrared photons. Their operation has been explained within a phenomenological hot-electron photoresponse model. Our receiver is intended for fiber-based quantum cryptography and communication systems, operational at near-infrared (NIR) telecommunication wavelengths, λ = 1.3 μm and λ = 1.55 μm. Coupling between the NbN detector and a single-mode optical fiber was achieved using a specially designed, micromechanical photoresist ring, positioned directly over the SSPD active area. The positioning accuracy of the ring was below 1 μm. The receiver with SSPDs was placed (immersed) in a standard liquid-helium transport Dewar and kept without interruption for over two months at 4.2 K. At the same time, the optical fiber inputs and electrical outputs were kept at room temperature. Our best system reached a system quantum efficiency of up to 0.3 % in the NIR radiation range, with the detector coupling efficiency of about 30 %. The response time was measured to be about 250 ps and was limited by our read-out electronics. The measured jitter was close to 35 ps. The presented performance parameters show that our NIR single photon detectors are suitable for practical quantum cryptography and for applications in quantum-correlation experiments.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Rogalski, A.; Dereniak, E.L.; Sizov, F.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Photoelectronics  
  Notes Approved no  
  Call Number Serial 1459  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Voronov, B.; Lipatov, A. P.; Pearlman, A. J.; Cross, A.; Slysz, W.; Verevkin, A. A.; Sobolewski, R. url  doi
openurl 
  Title Advanced nanostructured optical NbN single-photon detector operated at 2.0 K Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5732 Issue Pages 520-529  
  Keywords NbN SSPD, SNSPD  
  Abstract We present our studies on quantum efficiency (QE), dark counts, and noise equivalent power (NEP) of the latest generation of nanostructured NbN superconducting single-photon detectors (SSPDs) operated at 2.0 K. Our SSPDs are based on 4 nm-thick NbN films, patterned by electron beam lithography as highly-uniform 100÷120-nm-wide meander-shaped stripes, covering the total area of 10x10 μm2 with the meander filling factor of 0.7. Advances in the fabrication process and low-temperature operation lead to QE as high as  30-40% for visible-light photons (0.56 μm wavelength)-the saturation value, limited by optical absorption of the NbN film. For 1.55 μm photons, QE was  20% and decreased exponentially with the wavelength reaching  0.02% at the 5-μm wavelength. Being operated at 2.0-K temperature the SSPDs revealed an exponential decrease of the dark count rate, what along with the high QE, resulted in the NEP as low as 5x10-21 W/Hz-1/2, the lowest value ever reported for near-infrared optical detectors. The SSPD counting rate was measured to be above 1 GHz with the pulse-to-pulse jitter below 20 ps. Our nanostructured NbN SSPDs operated at 2.0 K significantly outperform their semiconducting counterparts and find practical applications ranging from noninvasive testing of CMOS VLSI integrated circuits to ultrafast quantum communications and quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Razeghi, M.; Brown, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Sensing and Nanophotonic Devices II  
  Notes Approved no  
  Call Number Serial 1478  
Permanent link to this record
 

 
Author Sobolewski, R.; Zhang, J.; Slysz, W.; Pearlman, A.; Verevkin, A.; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Goltsman, G. N. url  doi
openurl 
  Title Ultrafast superconducting single-photon optical detectors Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5123 Issue Pages 1-11  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a new class of single-photon devices for counting of both visible and infrared photons. Our superconducting single-photon detectors (SSPDs) are characterized by the intrinsic quantum efficiency (QE) reaching up to 100%, above 10 GHz counting rate, and negligible dark counts. The detection mechanism is based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The devices are fabricated from 3.5-nm-thick NbN films and operate at 4.2 K, well below the NbN superconducting transition temperature. Various continuous and pulsed laser sources in the wavelength range from 0.4 μm up to >3 μm were implemented in our experiments, enabling us to determine the detector QE in the photon-counting mode, response time, and jitter. For our best 3.5-nm-thick, 10×10 μm2-area devices, QE was found to reach almost 100% for any wavelength shorter than about 800 nm. For longer-wavelength (infrared) radiation, QE decreased exponentially with the photon wavelength increase. Time-resolved measurements of our SSPDs showed that the system-limited detector response pulse width was below 150 ps. The system jitter was measured to be 35 ps. In terms of the counting rate, jitter, and dark counts, the NbN SSPDs significantly outperform their semiconductor counterparts. Already identifeid and implemented applications of our devices range from noninvasive testing of semiconductor VLSI circuits to free-space quantum communications and quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Spigulis, J.; Teteris, J.; Ozolinsh, M.; Lusis, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Advanced Optical Devices, Technologies, and Medical Applications  
  Notes Approved no  
  Call Number Serial 1513  
Permanent link to this record
 

 
Author Verevkin, A. A.; Zhang, J.; Slysz, W.; Sobolewski, R.; Lipatov, A. P.; Okunev, O.; Chulkova, G.; Korneev, A.; Gol’tsman, G. N. url  doi
openurl 
  Title Superconducting single-photon detectors for GHz-rate free-space quantum communications Type Conference Article
  Year 2002 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 4821 Issue Pages 447-454  
  Keywords NbN SSPD, SNSPD, single-photon detector, thin-film superconductivity, quantum cryptography, ultrafast communications  
  Abstract We report our studies on the performance of new NbN ultrathin-film superconducting single-photon detectors (SSPDs). Our SSPDs exhibit experimentally measured quantum efficiencies from   5% at wavelength λ = 1550 nm up to  10% at λ = 405 nm, with exponential, activation-energy-type spectral sensitivity dependence in the 0.4-μm – 3-μm wavelength range. Using a variable optical delay setup, we have shown that our NbN SSPDs can resolve optical photons with a counting rate up to 10 GHz, presently limited by the read-out electronics. The measured device jitter was below 35 ps under optimum biasing conditions. The extremely high photon counting rate, together with relatively high (especially for λ > 1 μm) quantum efficiency, low jitter, and very low dark counts, make NbN SSPDs very promising for free-space communications and quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Ricklin, J.C.; Voelz, D.G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Free-Space Laser Communication and Laser Imaging II  
  Notes Approved no  
  Call Number Serial 1523  
Permanent link to this record
 

 
Author Korneev, A. A. url  doi
openurl 
  Title Superconducting NbN microstrip single-photon detectors Type Abstract
  Year 2021 Publication Proc. Quantum Optics and Photon Counting Abbreviated Journal Proc. Quantum Optics and Photon Counting  
  Volume 11771 Issue Pages  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting Single-Photon Detectors (SSPD) invented two decades ago have evolved to a mature technology and have become devices of choice in the advanced applications of quantum optics, such as quantum cryptography and optical quantum computing. In these applications SSPDs are coupled to single-mode fibers and feature almost unity detection efficiency, negligible dark counts, picosecond timing jitter and MHz photon count rate. Meanwhile, there are great many applications requiring coupling to multi-mode fibers or free space. ‘Classical’ SSPDs with 100-nm-wide superconducting strip and covering area of about 100 µm2 are not suitable for further scaling due to degradation of performance and low fabrication yield. Recently we have demonstrated single-photon counting in micron-wide superconducting bridges and strips. Here we present our approach to the realization of practical photon-counting detectors of large enough area to be efficiently coupled to multi-mode fibers or free space. The detector is either a meander or a spiral of 1-µm-wide strip covering an area of 50x50 µm2. Being operated at 1.7K temperature it demonstrates the saturated detection efficiency (i.e. limited by the absorption in the detector) up to 1550 nm wavelength, about 10 ns dead time and timing jitter in range 50-100 ps.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Prochazka, I.; Štefaňák, M.; Sobolewski, R.; Gábris, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Optics and Photon Counting; SPIE Optics + Optoelectronics, 2021, Online Only  
  Notes Approved no  
  Call Number Serial 1784  
Permanent link to this record
 

 
Author Zhang, J.; Verevkin, A.; Slysz, W.; Chulkova, G.; Korneev, A.; Lipatov, A.; Okunev, O.; Gol’tsman, G. N.; Sobolewski, Roman url  doi
openurl 
  Title Time-resolved characterization of NbN superconducting single-photon optical detectors Type Conference Article
  Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 10313 Issue Pages 103130F (1 to 3)  
  Keywords NbN SSPD, SNSPD  
  Abstract NbN superconducting single-photon detectors (SSPDs) are very promising devices for their picosecond response time, high intrinsic quantum efficiency, and high signal-to-noise ratio within the radiation wavelength from ultraviolet to near infrared (0.4 gm to 3 gm) [1-3]. The single photon counting property of NbN SSPDs have been investigated thoroughly and a model of hotspot formation has been introduced to explain the physics of the photon- counting mechanism [4-6]. At high incident flux density (many-photon pulses), there are, of course, a large number of hotspots simultaneously formed in the superconducting stripe. If these hotspots overlap with each other across the width w of the stripe, a resistive barrier is formed instantly and a voltage signal can be generated. We assume here that the stripe thickness d is less than the electron diffusion length, so the hotspot region can be considered uniform. On the other hand, when the photon flux is so low that on average only one hotspot is formed across w at a given time, the formation of the resistive barrier will be realized only when the supercurrent at sidewalks surpasses the critical current (jr) of the superconducting stripe [1]. In the latter situation, the formation of the resistive barrier is associated with the phase-slip center (PSC) development. The effect of PSCs on the suppression of superconductivity in nanowires has been discussed very recently [8, 9] and is the subject of great interest.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Armitage, J. C.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, 2002, Ottawa, Ontario, Canada  
  Notes Downloaded from http://www2.ece.rochester.edu/projects/ufqp/PDF/2002/213NbNTimeOPTO_b.pdf This artcle was published in 2017 with only first author indicated (Zhang, J.). There were 8 more authors! Approved no  
  Call Number Serial 1750  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title Coherent detection of weak signals with superconducting nanowire single photon detector at the telecommunication wavelength Type Conference Article
  Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 10229 Issue Pages 0G (1 to 12)  
  Keywords SSPD mixer, SNSPD, coherent detection, weak signal detection, superconducting nanostructures  
  Abstract Achievement of the ultimate sensitivity along with a high spectral resolution is one of the frequently addressed problems, as the complication of the applied and fundamental scientific tasks being explored is growing up gradually. In our work, we have investigated performance of a superconducting nanowire photon-counting detector operating in the coherent mode for detection of weak signals at the telecommunication wavelength. Quantum-noise limited sensitivity of the detector was ensured by the nature of the photon-counting detection and restricted by the quantum efficiency of the detector only. Spectral resolution given by the heterodyne technique and was defined by the linewidth and stability of the Local Oscillator (LO). Response bandwidth was found to coincide with the detector’s pulse width, which, in turn, could be controlled by the nanowire length. In addition, the system noise bandwidth was shown to be governed by the electronics/lab equipment, and the detector noise bandwidth is predicted to depend on its jitter. As have been demonstrated, a very small amount of the LO power (of the order of a few picowatts down to hundreds of femtowatts) was required for sufficient detection of the test signal, and eventual optimization could lead to further reduction of the LO power required, which would perfectly suit for the foreseen development of receiver matrices and the need for detection of ultra-low signals at a level of less-than-one-photon per second.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Prochazka, I.; Sobolewski, R.; James, R.B.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Photon counting applications  
  Notes Approved no  
  Call Number 10.1117/12.2267724 Serial 1201  
Permanent link to this record
 

 
Author Rath, P.; Vetter, A.; Kovalyuk, V.; Ferrari, S.; Kahl, O.; Nebel, C.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P. url  doi
openurl 
  Title Travelling-wave single-photon detectors integrated with diamond photonic circuits: operation at visible and telecom wavelengths with a timing jitter down to 23 ps Type Conference Article
  Year 2016 Publication Integrated Optics: Devices, Mat. Technol. XX Abbreviated Journal Integrated Optics: Devices, Mat. Technol. XX  
  Volume 9750 Issue Pages 135-142  
  Keywords SSPD, Superconducting Nanowire Single-Photon Detector, SNSPD, Single Photon Detector, Diamond Photonics, Diamond Integrated Optics, Diamond Waveguides, Integrated Optics, Low Timing Jitter  
  Abstract We report on the design, fabrication and measurement of travelling-wave superconducting nanowire single-photon detectors (SNSPDs) integrated with polycrystalline diamond photonic circuits. We analyze their performance both in the near-infrared wavelength regime around 1600 nm and at 765 nm. Near-IR detection is important for compatibility with the telecommunication infrastructure, while operation in the visible wavelength range is relevant for compatibility with the emission line of silicon vacancy centers in diamond which can be used as efficient single-photon sources. Our detectors feature high critical currents (up to 31 μA) and high performance in terms of efficiency (up to 74% at 765 nm), noise-equivalent power (down to 4.4×10-19 W/Hz1/2 at 765 nm) and timing jitter (down to 23 ps).  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Broquin, J.-E.; Conti, G.N.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1210  
Permanent link to this record
 

 
Author Pearlman, A.; Cross, A.; Slysz, W.; Zhang, J.; Verevkin, A.; Currie, M.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Sobolewski, R. url  doi
openurl 
  Title Gigahertz counting rates of NbN single-photon detectors for quantum communications Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 579-582  
  Keywords NbN SSPD, SNSPD  
  Abstract We report on the GHz counting rate and jitter of our nanostructured superconducting single-photon detectors (SSPDs). The devices were patterned in 4-nm-thick and about 100-nm-wide NbN meander stripes and covered a 10-/spl mu/m/spl times/10-/spl mu/m area. We were able to count single photons at both the visible and infrared telecommunication wavelengths at rates of over 2 GHz with a timing jitter of below 18 ps. We also present the model for the origin of the SSPD switching dynamics and jitter, based on the time-delay effect in the phase-slip-center formation mechanism during the detector photoresponse process. With further improvements in our readout electronics, we expect that our SSPDs will reach counting rates of up to 10 GHz. An integrated quantum communications receiver based on two fiber-coupled SSPDs and operating at 1550-nm wavelength is also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1465  
Permanent link to this record
 

 
Author Korneev, A.; Matvienko, V.; Minaeva, O.; Milostnaya, I.; Rubtsova, I.; Chulkova, G.; Smirnov, K.; Voronov, V.; Gol’tsman, G.; Slysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 571-574  
  Keywords NbN SSPD, SNSPD, QE, NEP  
  Abstract We present our studies on the quantum efficiency (QE) and the noise equivalent power (NEP) of the latest-generation, nanostructured, superconducting, single-photon detectors (SSPDs) in the wavelength range from 0.5 to 5.6 /spl mu/m, operated at temperatures in the 2.0- to 4.2-K range. Our detectors are designed as 4-nm-thick and 100-nm-wide NbN meander-shaped stripes, patterned by electron-beam lithography and cover a 10/spl times/10-/spl mu/m/sup 2/ active area. The best-achieved QE at 2.0 K for 1.55-/spl mu/m photons is 17%, and QE for 1.3-/spl mu/m infrared photons reaches its saturation value of /spl sim/30%. The SSPD NEP at 2.0 K is as low as 5/spl times/10/sup -21/ W/Hz/sup -1/2/. Our nanostructured SSPDs, operated at 2.0 K, significantly outperform their semiconducting counterparts, and, together with their GHz counting rate and picosecond timing jitter, they are devices-of-choice for practical quantum key distribution systems and free-space (even interplanetary) quantum optical communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1467  
Permanent link to this record
 

 
Author Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Wilsher, K.; Lo, W.; Okunev, O.; Korneev, A.; Kouminov, P.; Chulkova, G.; Gol’tsman, G. N. url  doi
openurl 
  Title A superconducting single-photon detector for CMOS IC probing Type Conference Article
  Year 2003 Publication Proc. 16-th LEOS Abbreviated Journal Proc. 16-th LEOS  
  Volume 2 Issue Pages 602-603  
  Keywords NbN SSPD, SNSPD  
  Abstract In this paper, a novel, time-resolved, NbN-based, superconducting single-photon detector (SSPD) has been developed for probing CMOS integrated circuits (ICs) using photon emission timing analysis (PETA).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003.  
  Notes Approved no  
  Call Number Serial 1510  
Permanent link to this record
 

 
Author Korneev, A.; Kovalyuk, V.; Ferrari, S.; Kahl, O.; Pernice, W.; An, P.; Golikov, A.; Zubkova, E.; Goltsman, G. url  doi
openurl 
  Title Superconducting Single-Photon Detectors for Integrated Nanophotonics Circuits Type Conference Article
  Year 2017 Publication 16th ISEC Abbreviated Journal 16th ISEC  
  Volume Issue Pages 1-3  
  Keywords SSPD, SNSPD  
  Abstract We present an overview of our recent achievements in integration of superconducting nanowire single-photon detectors SNSPD with dielectric optical waveguides. We are able to produce complex nanophotonics integrated circuits containing optical elements and photon detector on single chip thus producing a compact integrated platform for quantum optics applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 8314200 Serial 1200  
Permanent link to this record
 

 
Author Goltsman, G. N.; Korneev, A. A.; Finkel, M. I.; Divochiy, A. V.; Florya, I. N.; Korneeva, Y. P.; Tarkhov, M. A.; Ryabchun, S. A.; Tretyakov, I. V.; Maslennikov, S. N.; Kaurova, N. S.; Chulkova, G. M.; Voronov, B. M. url  doi
openurl 
  Title Superconducting hot-electron bolometer as THz mixer, direct detector and IR single-photon counter Type Abstract
  Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal  
  Volume Issue Pages 1-1  
  Keywords SSPD, SNSPD, HEB  
  Abstract We present a new generation of superconducting single-photon detectors (SSPDs) and hot-electron superconducting sensors with record characteristic for many terahertz and optical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-2027 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ goltsman2010superconducting Serial 1028  
Permanent link to this record
 

 
Author Gol’tsman, G.; Korneev, A.; Tarkhov, M.; Seleznev, V.; Divochiy, A.; Minaeva, O.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K. url  doi
openurl 
  Title Middle-infrared ultrafast superconducting single photon detector Type Conference Article
  Year 2007 Publication 32nd IRMW / 15th ICTE Abbreviated Journal 32nd IRMW / 15th ICTE  
  Volume Issue Pages 115-116  
  Keywords SSPD, SNSPD  
  Abstract We present the results of the research on quantum efficiency of the ultrathin-film superconducting single-photon detectors (SSPD) in the wavelength rage from 1 mum to 5.7 mum. Reduction of operation temperature to 1.6 K allowed us to measure quantum efficiency of ~1 % at 5.7 mum wavelength with the SSPD made from 4-nm-thick NbN film. In a pursuit of further performance improvement we endeavored SSPD fabricating from 4-nm-thick MoRe film as an alternative material. The MoRe film exhibited transition temperature of 7.7K, critical current density at 4.2 K temperature was 1.1times10 6 A/cm 2 , and diffusivity 1.73 cmVs. The single-photon response was observed with MoRe SSPD at 1.3 mum wavelength with quantum efficiency estimated to be 0.04%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1246  
Permanent link to this record
 

 
Author Rubtsova, I.; Korneev, A.; Matvienko, V.; Chulkova, G.; Milostnaya, I.; Goltsman, G.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Spectral sensitivity, quantum efficiency, and noise equivalent power of NbN superconducting single-photon detectors in the IR range Type Conference Article
  Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal Proc. 29th IRMMW / 12th THz  
  Volume Issue Pages 461-462  
  Keywords NbN SSPD, SNSPD  
  Abstract We have developed nanostructured NbN superconducting single-photon detectors capable of GHz-rate photon counting in the 0.4 to 5 /spl mu/m wavelength range. Quantum efficiency of 30%, dark count rate 3/spl times/10/sup -4/ s/sup -1/, and NEP=10/sup -20/ W/Hz/sup -1/2/ have been measured at the 1.3-/spl mu/m wavelength for the device operating at 2.0 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1507  
Permanent link to this record
 

 
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochij, A.; Rubtsova, I.; Antipov, A.; Ryabchun, S.; Okunev, O.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Kaurova, N.; Seleznev, V.; Korotetskaya, Y.; Gol’tsman, G. url  doi
openurl 
  Title Superconducting single-photon detector for near- and middle IR wavelength range Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology  
  Volume 2 Issue Pages 684-685  
  Keywords NbN SSPD, SNSPD  
  Abstract Presented in this paper are the results of research of NbN-film superconducting single-photon detector. At 2 K temperature, quantum efficiency in the visible light (0.56 mum) reaches 30-40 %. With the wavelength increase quantum efficiency decreases and comes to  20% at 1.55 mum and  0.02% at 5.6 mum. Minimum dark counts rate is 2times10-4s-1. The jitter of detector is 35 ps. The detector was successfully implemented for integrated circuits non-invasive optical testing. It is also perspective for quantum cryptography systems  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1447  
Permanent link to this record
 

 
Author Minaeva, O.; Divochiy, A.; Korneev, A.; Sergienko, A. V.; Goltsman, G. N. url  doi
openurl 
  Title High speed infrared photon counting with photon number resolving superconducting single-photon detectors (SSPDs) Type Conference Article
  Year 2009 Publication CLEO/Europe – EQEC Abbreviated Journal CLEO/Europe – EQEC  
  Volume Issue Pages  
  Keywords SSPD, SNSPD  
  Abstract A review of development and characterization of the nanostructures consisting of several meander sections, all connected in parallel was presented. Such geometry leads to a significant decrease of the kinetic inductance, without a decrease of the SSPD active area. A new type of SSPDs possess the QE of large-active- area devices, but, simultaneously, allows achieving short response times and the GHz-counting rate. This new generation of superconducting detectors has another significant advantage for quantum key distribution, they have a photon number resolving capability and can distinguish more photons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1399  
Permanent link to this record
 

 
Author Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol’tsman, G.; Stysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, R. url  doi
openurl 
  Title Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors Type Conference Article
  Year 2005 Publication Proc. 2-nd CAOL Abbreviated Journal Proc. 2-nd CAOL  
  Volume 2 Issue Pages 282-285  
  Keywords NbN SSPD, SNSPD  
  Abstract Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 /spl mu/m/sup 2/ in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 /spl mu/m and 1.55 /spl mu/m telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-helium storage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be <300 ps and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is <35 ps and their dark-count rate is below 1 s/sup -1/. The presented performance parameters show that our single-photon receivers are fully applicable for quantum-correlation-type QC systems, including practical quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Second International Conference on Advanced Optoelectronics and Lasers  
  Notes Approved no  
  Call Number Serial 1462  
Permanent link to this record
 

 
Author Chulkova, G.; Milostnaya, I.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Voronov, B.; Okunev, O.; Smirnov, K.; Gol’tsman, G.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, R.; Slysz, W. url  doi
openurl 
  Title Superconducting nanostructures for counting of single photons in the infrared range Type Conference Article
  Year 2005 Publication Proc. 2-nd CAOL Abbreviated Journal Proc. 2-nd CAOL  
  Volume 2 Issue Pages 100-103  
  Keywords SSPD, SNSPD  
  Abstract We present our studies on ultrafast superconducting single-photon detectors (SSPDs) based on ultrathin NbN nanostructures. Our SSPDs are patterned by electron beam lithography from 4-nm thick NbN film into meander-shaped strips covering square area of 10/spl times/10 /spl mu/m/sup 2/. The advances in the fabrication technology allowed us to produce highly uniform 100-120-nm-wide strips with meander filling factor close to 0.6. The detectors exploit a combined detection mechanism, where upon a single-photon absorption, an avalanche of excited hot electrons and the biasing supercurrent, jointly produce a picosecond voltage transient response across the superconducting nanostrip. The SSPDs are typically operated at 4.2 K, but they have shown that their sensitivity in the infrared radiation range can be significantly improved by lowering the operating temperature from 4.2 K to 2 K. When operated at 2 K, the SSPD quantum efficiency (QE) for visible light photons reaches 30-40%, which is the saturation value limited by optical absorption of our 4-nm-thick NbN film. For 1.55 /spl mu/m photons, QE was /spl sim/20% and decreases exponentially with the increase of the optical wavelength, but even at the wavelength of 6 /spl mu/m the detector remains sensitive to single photons and exhibits QE of about 10/sup -2/%. The dark (false) count rate at 2 K is as low as 2 /spl times/ 10/sup -4/ s/sup -1/, what makes our detector essentially a background-limited sensor. The very low dark-count rate results in the noise equivalent power (NEP) as low as 10/sup -18/ WHz/sup -1/2/ for the mid-infrared range (6 /spl mu/m). Further improvement of the SSPD performance in the mid-infrared range can be obtained by substituting NbN for the other, lower-T/sub c/ superconductors with the narrow superconducting gap and low quasiparticle diffusivity. The use of such materials will shift the cutoff wavelength towards the values even longer than 6 /spl mu/m.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Second International Conference on Advanced Optoelectronics and Lasers  
  Notes Approved no  
  Call Number Serial 1461  
Permanent link to this record
 

 
Author Zhang, J.; Boiadjieva, N.; Chulkova, G.; Deslandes, H.; Gol'tsman, G. N.; Korneev, A.; Kouminov, P.; Leibowitz, M.; Lo, W.; Malinsky, R.; Okunev, O.; Pearlman, A.; Slysz, W.; Smirnov, K.; Tsao, C.; Verevkin, A.; Voronov, B.; Wilsher, K.; Sobolewski, R. url  doi
openurl 
  Title Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors Type Journal Article
  Year 2003 Publication Electron. Lett. Abbreviated Journal Electron. Lett.  
  Volume 39 Issue 14 Pages 1086-1088  
  Keywords NbN SSPD, SNSPD, applications  
  Abstract The 3.5 nm thick-film, meander-structured NbN superconducting single-photon detectors have been implemented in the CMOS circuit-testing system based on the detection of near-infrared photon emission from switching transistors and have significantly improved the performance of the system. Photon emissions from both p- and n-MOS transistors have been observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-5194 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1512  
Permanent link to this record
 

 
Author Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, Roman url  openurl
  Title Ultrafast NBN hot-electron single-photon detectors for electronic applications Type Abstract
  Year 2002 Publication Abstracts 8-th IUMRS-ICEM Abbreviated Journal Abstracts 8-th IUMRS-ICEM  
  Volume Issue Pages  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a new, simple to manufacture, single-photon detector (SPD), which can work from ultraviolet to near-infrared wavelengths of optical radiation and combines high speed of operation, high quantum efficiency (QE), and very low dark counts. The devices are superconducting and operate at temperature below 5 K. The physics of operation of our SPD is based on formation of a photon-induced resistive hotspot and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconductor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 8th IUMRS International Conference on Electronic Materials  
  Notes Approved no  
  Call Number Serial 1532  
Permanent link to this record
 

 
Author Chulkova, G.; Milostnaya, I.; Tarkhov, M.; Korneev, A.; Minaeva, O.; Voronov, B.; Divochiy, A.; Gol'tsman, G.; Kitaygorsky, J.; Pan, D.; Sobolewski, R. url  openurl
  Title Superconducting single-photon nanostructured detectors for advanced optical applications Type Conference Article
  Year 2006 Publication Proc. Symposium on Photonics Technologies for 7th Framework Program Abbreviated Journal  
  Volume 400 Issue Pages  
  Keywords SSPD, SNSPD  
  Abstract We present superconducting single-photon detectors (SSPDs) based on NbN thin-film nanostructures and operated at liquid helium temperatures. The SSPDs are made of ultrathin NbN films (2.5-4 nm thick, Tc= 9-11K) as meander-shaped nanowires covering the area of 10× 10 µm2. Our detectors are operated at the temperature well below the critical temperature Tc and are DC biased by a current Ib close to the meander critical current Ic. The operation principle of the detector is based on the use of the resistive region in a narrow ultra-thin superconducting stripe upon the absorption of an incident photon. The developed devices demonstrate high sensitivity and response speed in a broadband range from UV to mid-IR (up to 6 µm), making them very attractive for advanced optical technologies, which require efficient detectors of single quanta and low-density optical radiation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ chulkova2006superconducting Serial 1021  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M. url  openurl
  Title Optical single photon detection in micron-scaled NbN bridges Type Miscellaneous
  Year 2018 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords SSPD  
  Abstract We demonstrate experimentally that single photon detection can be achieved in micron-wide NbN bridges, with widths ranging from 0.53 μm to 5.15 μm and for photon-wavelengths from 408 nm to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50 % of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors (SSPDs), based on nanometer scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modelling based on the theory of non-equilibrium superconductivity including the vortex-assisted mechanism of initial dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1303 Approved no  
  Call Number Serial 1312  
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. url  openurl
  Title Spectrally resolved single-photon imaging with hybrid superconducting – nanophotonic circuits Type Miscellaneous
  Year 2016 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 1-20  
  Keywords waiveguide SSPD, SNSPD, imaging  
  Abstract The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength division multiplexing on a chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1334  
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneev, A. A.; Chulkova, G. M.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Goltsman, G. N. url  openurl
  Title Non-bolometric bottleneck in electron-phonon relaxation in ultra-thin WSi film Type Miscellaneous
  Year 2018 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords WSi films, diffusion constant, SSPD, SNSPD  
  Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in tau{e-ph} = 140-190 ps at TC = 3.4 K, supporting the results of earlier measurements by independent techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1305 Approved no  
  Call Number Serial 1341  
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, A.; Korneev, A.; Chulkova, G.; Korneeva, Y.; Mikhailov, M.; Devizenko, A.; Kozorezov, A.; Goltsman, G. url  openurl
  Title Electron-phonon relaxation time in ultrathin tungsten silicon film Type Miscellaneous
  Year 2018 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords WSi film  
  Abstract Using amplitude-modulated absorption of sub-THz radiation (AMAR) method, we studied electron-phonon relaxation in thin disordered films of tungsten silicide. We found a response time ~ 800 ps at critical temperature Tc = 3.4 K, which scales as minus 3 in the temperature range from 1.8 to 3.4 K. We discuss mechanisms, which can result in a strong phonon bottle-neck effect in a few nanometers thick film and yield a substantial difference between the measured time, characterizing response at modulation frequency, and the inelastic electron-phonon relaxation time. We estimate the electron-phonon relaxation time to be in the range ~ 100-200 ps at 3.4 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1341 Approved no  
  Call Number Serial 1340  
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Álvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol’tsman, G. N. url  openurl
  Title Quasi-1-dimensional superconductivity in highly disordered NbN nanowires Type Miscellaneous
  Year 2016 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords narrow NbN nanowires, BCS  
  Abstract The topic of superconductivity in strongly disordered materials has attracted a significant attention. In particular vivid debates are related to the subject of intrinsic spatial inhomogeneity responsible for non-BCS relation between the superconducting gap and the pairing potential. Here we report experimental study of electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. We find that conventional models based on phase slip concept provide reasonable fits for the shape of the R(T) transition curve. Temperature dependence of the critical current follows the text-book Ginzburg-Landau prediction for quasi-one-dimensional superconducting channel Ic~(1-T/Tc)^3/2. Hence, one may conclude that the intrinsic electronic inhomogeneity either does not exist in our structures, or, if exist, does not affect their resistive state properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1332 Approved no  
  Call Number Serial 1338  
Permanent link to this record
 

 
Author Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol’tsman, G.; Bezryadin, A. url  openurl
  Title Dark counts initiated by macroscopic quantum tunneling in NbN superconducting photon detectors Type Miscellaneous
  Year 2014 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords NbN SSPD  
  Abstract We perform measurements of the switching current distributions of three w = 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number murphy2014dark Serial 1356  
Permanent link to this record
 

 
Author Baeva, E.; Sidorova, M.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title Precise measurement of the thermal conductivity of superconductor Type Conference Article
  Year 2018 Publication Proc. AIP Conf. Abbreviated Journal Proc. AIP Conf.  
  Volume 1936 Issue 1 Pages 020003 (1 to 4)  
  Keywords NbN SSPD, SNSPD  
  Abstract Measuring the thermal properties such as the heat capacity provide information about intrinsic mechanisms operated inside. In general, the ratio between electron and phonon specific heat Ce/Cp shows how the absorbed energy shared between electron and phonon subsystems. In this work we make estimations for amplitude-modulated absorption of THz radiation technique for investigation of the ratio Ce/Cp in superconducting Niobium Nitride (NbN) at T = Tc. Our results indicates that experimentally the frequency of modulation has to be extra large to extract the quantity. We perform a new technique allowed to work at low frequency with accurately measurement of absorbed power.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number doi:10.1063/1.5025441 Serial 1311  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Elezov, M.; Manova, N.; Sedykh, K.; Korneev, A.; Korneeva, Y.; Dryazgov, M.; Simonov, N.; Feimov, A.; Goltsman, G.; Sych, D. url  doi
openurl 
  Title Single-pixel camera with a large-area microstrip superconducting single photon detector on a multimode fiber Type Journal Article
  Year 2021 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 118 Issue 18 Pages 181103  
  Keywords NbN SSPD, SNSPD  
  Abstract High sensitivity imaging at the level of single photons is an invaluable tool in many areas, ranging from microscopy to astronomy. However, development of single-photon sensitive detectors with high spatial resolution is very non-trivial. Here we employ the single-pixel imaging approach and demonstrate a proof-of-principle single-pixel single-photon imaging setup. We overcome the problem of low light gathering efficiency by developing a large-area microstrip superconducting single photon detector coupled to a multi-mode optical fiber interface. We show that the setup operates well in the visible and near infrared spectrum, and is able to capture images at the single-photon level.

We thank Philipp Zolotov and Pavel Morozov for NbN film fabrication, ARC coating, and fiber coupling of the detector. We also thank Swabian Instruments GmbH and Dr. Helmut Fedder personally for the kindly provided experimental equipment (Time Tagger Ultra 8). The work in the part of SNSPD research and development was supported by the Russian Foundation for Basic Research Project No. 18-29-20100. The work in the part of the optical setup and imaging was supported by Russian Foundation for Basic Research Project No. 20-32-51004.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1770  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G. url  doi
openurl 
  Title Ultrafast superconducting single-photon detector Type Journal Article
  Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 56 Issue 15 Pages 1670-1680  
  Keywords SSPD, SNSPD  
  Abstract The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 607  
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G. url  doi
openurl 
  Title Superconducting parallel nanowire detector with photon number resolving functionality Type Journal Article
  Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 56 Issue 2-3 Pages 334-344  
  Keywords PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN  
  Abstract We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 701  
Permanent link to this record
 

 
Author Słysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Böhi, P.; Pearlman, A.J.; Cross, A.S.; Pan, D.; Kitaygorsky, J.; Komissarov, I.; Verevkin, A.; Milostnaya, I.; Korneev, A.; Minayeva, O.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol’tsman, G.N.; Sobolewski, R. url  doi
openurl 
  Title Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications Type Journal Article
  Year 2007 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 54 Issue 2-3 Pages 315-326  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a novel, two-channel, single photon receiver based on two fibre-coupled, NbN, superconducting, single photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders and are known for ultrafast and efficient detection of visible-to-infrared photons. Coupling between the NbN detector and optical fibre was achieved using a micromechanical photoresist ring placed directly over the SSPD, holding the fibre in place. With this arrangement, we obtained coupling efficiencies up to ∼30%. Our experimental results showed that the best receiver had a near-infrared system quantum efficiency of 0.33% at 4.2 K. The quantum efficiency increased exponentially with the photon energy increase, reaching a few percent level for visible-light photons. The photoresponse pulses of our devices were limited by the meander high kinetic inductance and had the rise and fall times of approximately 250 ps and 5 ns, respectively. The receiver's timing jitter was in the 37 to 58 ps range, approximately 2 to 3 times larger than in our older free-space-coupled SSPDs. We stipulate that this timing jitter is in part due to optical fibre properties. Besides quantum communications, the two-detector arrangement should also find applications in quantum correlation experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1434  
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. url  doi
openurl 
  Title Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits: supplementary material Type Miscellaneous
  Year 2017 Publication Optica Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords Quantum detectors; Spectrometers and spectroscopic instrumentation; Nanophotonics and photonic crystals; Fluorescence correlation spectroscopy; Fluorescence resonance energy transfer; Fluorescence spectroscopy; Imaging techniques; Optical components; Quantum key distribution  
  Abstract This document provides supplementary information to “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits", DOI:10.1364/optica.4.000557. Here we detail the on-chip spectrometer design, its characterization and the experimental setup we used. In addition, we present a detailed report concerning the characterization of the superconducting nanowire single photon detectors. In the final sections, we describe sample preparation and characterization of the nanodiamonds containing silicon vacancy color centers.  
  Address  
  Corporate Author Thesis  
  Publisher Osa Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Kahl:17 Serial 1218  
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Divochiy, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Gol’tsman, G.; Lagoudakis, K.G.; Benkahoul, M.; Lévy, F.; Fiore, A. url  isbn
openurl 
  Title Superconducting nanowire photon number resolving detector at telecom wavelength Type Conference Article
  Year 2008 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages Qmj1 (1 to 2)  
  Keywords PNR SSPD; SNSPD; Detectors; Infrared; Low light level; Diode lasers; Photons; Scanning electron microscopy; Superconductors; Ti:sapphire lasers  
  Abstract We demonstrate a photon-number-resolving (PNR) detector, based on parallel superconducting nanowires, capable of resolving up to 5 photons in the telecommunication wavelength range, with sensitivity and speed far exceeding existing approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-55752-859-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Marsili:08 Serial 1243  
Permanent link to this record
 

 
Author Minaeva, O.; Fraine, A.; Korneev, A.; Divochiy, A.; Goltsman, G.; Sergienko, A. url  doi
openurl 
  Title High resolution optical time-domain reflectometry using superconducting single-photon detectors Type Conference Article
  Year 2012 Publication Frontiers in Opt. 2012/Laser Sci. XXVIII Abbreviated Journal Frontiers in Opt. 2012/Laser Sci. XXVIII  
  Volume Issue Pages Fw3a.39  
  Keywords SSPD, SNSPD, Photodetectors; Fiber characterization; Light beams; Optical time domain reflectometry; Photon counting; Single mode fibers; Single photon detectors; Superconductors  
  Abstract We discuss the advantages and limitations of single-photon optical time-domain reflectometry with superconducting single-photon detectors. The higher two-point resolution can be achieved due to superior timing performance of SSPDs in comparison with InGaAs APDs.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1237  
Permanent link to this record
 

 
Author Verevkin, A.; Slysz, W.; Pearlman, A.; Zhang, J.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Currie, M. url  openurl
  Title Real-time GHz-rate counting of infrared photons using nanostructured NbN superconducting detectors Type Conference Article
  Year 2003 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages CThM8  
  Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Detectors; Photon counting; Quantum communications; Quantum cryptography; Single photon detectors; Superconductors  
  Abstract We demonstrate that our ultrathin, nanometer-width NbN superconducting single-photon detectors are capable of above 1-GHz-frequency, real-time counting of near-infrared photons. The measured system jitter of the detector is below 15 ps.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference  
  Notes Approved no  
  Call Number Serial 1517  
Permanent link to this record
 

 
Author Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Lo, W.; Wilsher, K. url  openurl
  Title Infrared picosecond superconducting single-photon detectors for CMOS circuit testing Type Conference Article
  Year 2003 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages Cmv4  
  Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Electron beam lithography; Infrared detectors; Infrared radiation; Quantum efficiency; Single photon detectors; Superconductors  
  Abstract Novel, NbN superconducting single-photon detectors have been developed for ultrafast, high quantum efficiency detection of single quanta of infrared radiation. Our devices have been successfully implemented in a commercial VLSI CMOS circuit testing system.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference  
  Notes Approved no  
  Call Number Serial 1518  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kazakov, A.; Voronov, B.M.; Goltsman, G.N. url  doi
openurl 
  Title Potential of a superconducting photon counter for heterodyne detection at the telecommunication wavelength Type Journal Article
  Year 2016 Publication Opt. Express Abbreviated Journal Opt. Express  
  Volume 24 Issue 26 Pages 30474-30484  
  Keywords NbN SSPD mixer, SNSPD  
  Abstract Here, we report on the successful operation of a NbN thin film superconducting nanowire single-photon detector (SNSPD) in a coherent mode (as a mixer) at the telecommunication wavelength of 1550 nm. Providing the local oscillator power of the order of a few picowatts, we were practically able to reach the quantum noise limited sensitivity. The intermediate frequency gain bandwidth (also referred to as response or conversion bandwidth) was limited by the spectral band of a single-photon response pulse of the detector, which is proportional to the detector size. We observed a gain bandwidth of 65 MHz and 140 MHz for 7 x 7 microm2 and 3 x 3 microm2 devices, respectively. A tiny amount of the required local oscillator power and wide gain and noise bandwidths, along with unnecessary low noise amplification, make this technology prominent for various applications, with the possibility for future development of a photon counting heterodyne-born large-scale array.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28059394 Approved no  
  Call Number Serial 1207  
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N. url  doi
openurl 
  Title Superconductivity in highly disordered NbN nanowires Type Journal Article
  Year 2016 Publication Nanotechnol. Abbreviated Journal Nanotechnol.  
  Volume 27 Issue 47 Pages 47lt02 (1 to 8)  
  Keywords NbN nanowires  
  Abstract The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.  
  Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27782000 Approved no  
  Call Number Serial 1332  
Permanent link to this record
 

 
Author Vetter, A.; Ferrari, S.; Rath, P.; Alaee, R.; Kahl, O.; Kovalyuk, V.; Diewald, S.; Goltsman, G. N.; Korneev, A.; Rockstuhl, C.; Pernice, W. H. P. url  doi
openurl 
  Title Cavity-enhanced and ultrafast superconducting single-photon detectors Type Journal Article
  Year 2016 Publication Nano Lett. Abbreviated Journal Nano Lett.  
  Volume 16 Issue 11 Pages 7085-7092  
  Keywords SSPD; SNSPD; multiphoton detection; nanophotonic circuit; photonic crystal cavity  
  Abstract Ultrafast single-photon detectors with high efficiency are of utmost importance for many applications in the context of integrated quantum photonic circuits. Detectors based on superconductor nanowires attached to optical waveguides are particularly appealing for this purpose. However, their speed is limited because the required high absorption efficiency necessitates long nanowires deposited on top of the waveguide. This enhances the kinetic inductance and makes the detectors slow. Here, we solve this problem by aligning the nanowire, contrary to usual choice, perpendicular to the waveguide to realize devices with a length below 1 mum. By integrating the nanowire into a photonic crystal cavity, we recover high absorption efficiency, thus enhancing the detection efficiency by more than an order of magnitude. Our cavity enhanced superconducting nanowire detectors are fully embedded in silicon nanophotonic circuits and efficiently detect single photons at telecom wavelengths. The detectors possess subnanosecond decay ( approximately 120 ps) and recovery times ( approximately 510 ps) and thus show potential for GHz count rates at low timing jitter ( approximately 32 ps). The small absorption volume allows efficient threshold multiphoton detection.  
  Address Institute of Physics, University of Munster , 48149 Munster, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27759401 Approved no  
  Call Number Serial 1208  
Permanent link to this record
 

 
Author Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol'tsman, G.; Bezryadin, A. url  doi
openurl 
  Title Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts Type Journal Article
  Year 2015 Publication Sci. Rep. Abbreviated Journal Sci. Rep.  
  Volume 5 Issue Pages 10174 (1 to 10)  
  Keywords SPD, SSPD, SNSPD  
  Abstract We perform measurements of the switching current distributions of three w approximately 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.  
  Address Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25988591; PMCID:PMC4437302 Approved no  
  Call Number Serial 1344  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: