toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Goltsman, G. N. url  openurl
  Title Fabrication and characterisation of NbN HEB mixers with in situ gold contacts Type Conference Article
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 19th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 62-67  
  Keywords HEB, mixer, NbN, in-situ contacts  
  Abstract We present our recent results of the fabrication and testing of NbN hot-electron bolometer mixers with in situ gold contacts. An intermediate frequency bandwidth of about 6 GHz has been measured for the mixers made of a 3.5-nm NbN film on a plane Si substrate with in situ gold contacts, compared to 3.5 GHz for devices made of the same film with ex situ gold contacts. The increase in the intermediate frequency bandwidth is attributed to additional diffusion cooling through the improved contacts, which is further supported by the its dependence on the bridge length: intermediate frequency bandwidths of 3.5 GHz and 6 GHz have been measured for devices with lengths of 0.35 μm and 0.16 μm respectively at a local oscillator frequency of 300 GHz near the superconducting transition. At a local oscillator frequency of 2.5 THz the receiver has offered a DSB noise temperature of 950 K. When compared to the previous result of 1300 K obtained at the same local oscillator frequency for devices fabricated with an ex situ route, such a low value of the noise temperature may also be attributed to the improved gold contacts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Groningen, Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 412  
Permanent link to this record
 

 
Author Smirnov, A. V.; Larionov, P. A.; Finkel, M. I.; Maslennikov, S. N.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title NbZr films for THz phonon-cooled HEB mixers Type Conference Article
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 19th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 44-47  
  Keywords HEB, NbZr, material search  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Groningen, Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 577  
Permanent link to this record
 

 
Author Wild, Wolfgang; Baryshev, Andrey; de Graauw, Thijs; Kardashev, Nikolay; Likhachev, Sergey; Goltsman, Gregory; Koshelets, Valery url  openurl
  Title Instrumentation for Millimetron – a large space antenna for THz astronomy Type Conference Article
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 19th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 186-191  
  Keywords Millimetron space observatory, VLBI  
  Abstract Millimetron is a Russian-led 12m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation and funded for launch after 2015. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron is currently in a conceptual design phase carried out by the Astro Space Center in Moscow and SRON Netherlands Institute for Space Research. It will use a passively cooled deployable antenna with a high-precision central 3.5m diameter mirror and high- precision antenna petals. The antenna is specified for observations up to ~2 THz over the whole 12m diameter, and to higher frequencies using the central 3.5m solid mirror. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space VLBI system. As single-dish, angular resolutions on the order of 3 to 12 arcsec will be achieved and spectral resolutions of up to 10 6 employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines resulting in micro-arcsec angular resolution. The scientific payload will consist of heterodyne and direct detection instruments covering the most important sub-/millimeter spectral regions (including some ALMA bands) and will build on the Herschel and ALMA heritage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1412  
Permanent link to this record
 

 
Author Semenov, A. D.; Sergeev, A. V.; Kouminov, P.; Goghidze, I. G.; Heusinger, M. A.; Nebosis, R. S.; Gol'tsman, G. N.; Gershenzon, E. M.; Renk, K. F. url  isbn
openurl 
  Title Transparency of YBCO film/substrate interfaces for thermal phonons determined by photoresponse measurements Type Conference Article
  Year 1993 Publication Proc. 1st European Conf. on Appl. Supercond. Abbreviated Journal (up) Proc. 1st European Conf. on Appl. Supercond.  
  Volume 2 Issue Pages 1443-1446  
  Keywords YBCO HTS detectors  
  Abstract Direct measurements of the thermal boundary resistance were performed by means of the stationary method. In this approach the temperature of an electrically heated film is controlled by its dc resistance while an additional film on the same substrate is used as a thermometer monitoring substrate temperature. The temperature field in the substrate is then calculated to deduce the Kapitza temperature step at the interface between the heated strip and the substrate. The main statement of all afore-said papers is that experimental values of the thermal boundary resistance are too large to be explained by the acoustic mismatch model. In this paper we investigate transparency of YBaCuO film/substrate interfaces for thermal phonons by means of photoresponse measurements. We show that our data are in reasonable agreement with the acoustic mismatch theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Freyhardt, H. C.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 3-88355-197-X Medium  
  Area Expedition Conference 1st European conference on applied superconductivity  
  Notes Approved no  
  Call Number Serial 1661  
Permanent link to this record
 

 
Author Chulkova, G.; Milostnaya, I.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Voronov, B.; Okunev, O.; Smirnov, K.; Gol’tsman, G.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, R.; Slysz, W. url  doi
openurl 
  Title Superconducting nanostructures for counting of single photons in the infrared range Type Conference Article
  Year 2005 Publication Proc. 2-nd CAOL Abbreviated Journal (up) Proc. 2-nd CAOL  
  Volume 2 Issue Pages 100-103  
  Keywords SSPD, SNSPD  
  Abstract We present our studies on ultrafast superconducting single-photon detectors (SSPDs) based on ultrathin NbN nanostructures. Our SSPDs are patterned by electron beam lithography from 4-nm thick NbN film into meander-shaped strips covering square area of 10/spl times/10 /spl mu/m/sup 2/. The advances in the fabrication technology allowed us to produce highly uniform 100-120-nm-wide strips with meander filling factor close to 0.6. The detectors exploit a combined detection mechanism, where upon a single-photon absorption, an avalanche of excited hot electrons and the biasing supercurrent, jointly produce a picosecond voltage transient response across the superconducting nanostrip. The SSPDs are typically operated at 4.2 K, but they have shown that their sensitivity in the infrared radiation range can be significantly improved by lowering the operating temperature from 4.2 K to 2 K. When operated at 2 K, the SSPD quantum efficiency (QE) for visible light photons reaches 30-40%, which is the saturation value limited by optical absorption of our 4-nm-thick NbN film. For 1.55 /spl mu/m photons, QE was /spl sim/20% and decreases exponentially with the increase of the optical wavelength, but even at the wavelength of 6 /spl mu/m the detector remains sensitive to single photons and exhibits QE of about 10/sup -2/%. The dark (false) count rate at 2 K is as low as 2 /spl times/ 10/sup -4/ s/sup -1/, what makes our detector essentially a background-limited sensor. The very low dark-count rate results in the noise equivalent power (NEP) as low as 10/sup -18/ WHz/sup -1/2/ for the mid-infrared range (6 /spl mu/m). Further improvement of the SSPD performance in the mid-infrared range can be obtained by substituting NbN for the other, lower-T/sub c/ superconductors with the narrow superconducting gap and low quasiparticle diffusivity. The use of such materials will shift the cutoff wavelength towards the values even longer than 6 /spl mu/m.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Second International Conference on Advanced Optoelectronics and Lasers  
  Notes Approved no  
  Call Number Serial 1461  
Permanent link to this record
 

 
Author Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol’tsman, G.; Stysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, R. url  doi
openurl 
  Title Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors Type Conference Article
  Year 2005 Publication Proc. 2-nd CAOL Abbreviated Journal (up) Proc. 2-nd CAOL  
  Volume 2 Issue Pages 282-285  
  Keywords NbN SSPD, SNSPD  
  Abstract Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 /spl mu/m/sup 2/ in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 /spl mu/m and 1.55 /spl mu/m telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-helium storage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be <300 ps and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is <35 ps and their dark-count rate is below 1 s/sup -1/. The presented performance parameters show that our single-photon receivers are fully applicable for quantum-correlation-type QC systems, including practical quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Second International Conference on Advanced Optoelectronics and Lasers  
  Notes Approved no  
  Call Number Serial 1462  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Smirnov, K. V.; Gol’tsman, G. N.; Filippenko, L. V.; Koshelets, V. P. url  openurl
  Title Terahertz imaging system based on superconducting integrated receiver Type Conference Article
  Year 2010 Publication Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications Abbreviated Journal (up) Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications  
  Volume Issue Pages 20-22  
  Keywords SIS mixer, SIR  
  Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Developing an array of SIRs would allow obtaining amplitude and phase characteristics of incident radiation in the plane of the receiver. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compare to traditional systems: i) high temperature resolution, comparable to the best results for incoherent receivers; ii) high spectral resolution allowing spectral analysis of various substances; iii) the local oscillator frequency can be varied to obtain images at different frequencies, effectively providing “color” images; iv) since a heterodyne receiver preserves the phase of the radiation, it is possible to construct 3D images. The paper presents a prototype THz imaging system using an 1 pixel SIR. We have studied the dependence of the noise equivalent temperature difference (NETD) on the integration time and also possible ways of achieving best possible sensitivity. An NETD of 13 mK was obtained with an integration time of 1 sec a detection bandwidth of 4 GHz at a local oscillator frequency of 520 GHz. An important advantage of an FFO is its wide operation range: 300-700 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number ozhegov2010terahertz Serial 1397  
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 20th ISSTT  
  Volume Issue Pages 151-154  
  Keywords HEB, mixer, bandwidth, noise temperatue, in-situ contacts, in situ contacts  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Charlottesville, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 590  
Permanent link to this record
 

 
Author Lobanov, Y.; Tong, C.; Blundell, R.; Gol'tsman, G. url  openurl
  Title A study of direct detection effect on the linearity of hot electron bolometer mixers Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 20th ISSTT  
  Volume Issue Pages 282-287  
  Keywords HEB mixer, direct detection effect  
  Abstract We have performed a study of how direct detection affects the linearity and hence the calibration of an HEB mixer. Two types of waveguide HEB devices have been used: a 0.8 THz HEB mixer and a 1.0 THz HEB mixer which is ~5 times smaller than the former. Two independent experimental approaches were used. In the ΔG/G method, the conversion gain of the HEB mixer is first measured as a function of the bias current for a number of bias voltages. At each bias setting, we carefully measure the change in the operating current when the input loads are switched. From the measured data, we can derive the expected difference in gain between the hot and cold loads. In the second method (injection method [1]), the linearity of the HEB mixer is independently measured by injecting a modulated signal for different input load temperatures. The results of both approaches confirm that there is gain compression in the operation of HEB mixers. Based on the results of our measurements, we discuss the impact of direct detection effects on the operation of HEB mixers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 724  
Permanent link to this record
 

 
Author Baryshev, A. M.; Wild, W.; Likhachev, S. F.; Vdovin, V. F.; Goltsman, G. N.; Kardashev, N. S. url  openurl
  Title Main parameters and instrumentation of Millimetron space mission Type Abstract
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 20th ISSTT  
  Volume Issue Pages 108  
  Keywords SVLBI, Millimetron space observatory  
  Abstract Millimetron (official RosKosmos name ”Spectrum-M”) is a part of ambitious program called Spectrum intended to cover the whole electromagnetic spectrum with world class facilities. It is an approved mission included in Russian space program with the launch date in 2017..2019 time frame. The Millimetron satellite has a deployable 12 m diameter antenna with inner solid 4..6 m dish and a rim of petals. The mirror design is largely based on Radioastron mission concept that will be launched in 2009. If the antenna is passively cooled by radiation to open space, it would operate at approx. 50 K surface temperature, due to presence of a deployable three layer radiation screen. As a goal, there is a consideration of active cooling of antenna to 4 K, but this will depend on resources available to the project. Lagrangian libration point L2 considered for Millimetron orbit. There are four groups of scientific instruments envisioned: SVLBI instruments Space-Earth VLBI. It will allow to achieve unprecedented spatial resolution. Millimetron mission will attempt to achieve a mm/submm wave SVLBI. For that purpose, a SVLBI instrument covering selected ALMA bands and a standard VLBI band is envisioned, accompanied by a maser reference oscillator, a data digitizing and memory system, and a high speed data transmission link to ground. The ALMA bands can be extended to cover water lines if detector technology allows. Type of detector – heterodyne. Photometer/polarimeter. Recent progress in direct detector cameras with low spectral resolution, allows to propose a large format (5-10 kPixel) photometer camera on board of Millimetron mission. This camera can cover 0.1 – 2 THz region (with adequate amount of pixels per each subband). Wide band moderate resolution imaging spectrometer. Wide band moderate R = 1000 imaging spectrometer type instrument similar to SPICA SAFARI is planned, taking advantage of large cooled dish. It will cover the adequate spectral range allowable by antenna and will also work below 1 THz, as no ground instrument can have a cold main dish. High resolution spectrometer. For high resolution spectroscopy a heterodyne instrument is proposed, conceptually similar to HIFI on Herschel. This instrument will cover interesting frequency spots in 0.5..4 THz frequency range (using central part of antenna for higher frequency). It is sure that advances in LO and mixer technology will allow this frequency coverage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1401  
Permanent link to this record
 

 
Author Maslennikova, Anna; Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Kaurova, Natalia; Voronov, Boris; Gol’tsman, Gregory url  openurl
  Title Gain bandwidth and noise temperature of NbN HEB mixers with simultaneous phonon and diffusion cooling Type Abstract
  Year 2010 Publication Proc. 21th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 21th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 218-219  
  Keywords  
  Abstract The space observatory Millimetron will be operating in the millimeter, sub-millimeter and infrared ranges using a 12-m cryogenic telescope in a single-dish mode, and as an interferometer with the space-earth and space-space baselines (the latter after the launch of the second identical space telescope). The observatory will allow performing astronomical observations with an unprecedented sensitivity (down to nJy level) in the single-dish mode, and observations with a high angular resolution in the interferometer mode. The total spectral range 20 μm – 2 cm is separated into 10 bands. HEB mixers with two cooling channels (diffusion and phonon) have been chosen to be the detectors of choice of the system covering the range from 1 THz to 6 THz as the best detectors in terahertz receivers. This type of HEB has already shown good work in the terahertz range. A gain bandwidth of 6 GHz at an LO frequency of 300 GHz and a noise temperature of 750 K at an LO frequency of 2.5 THz are the best values for HEB mixers with two cooling channels [1]. Theoretical estimations predict a bandwidth up to 12 GHz. Reaching such good result demands more systematic and thorough research. We present the results of the gain bandwidth and noise temperature measurements for superconducting hot- electron bolometer mixers with two cooling channels. These characteristics of the devices of lengths varying from 50 to 200 nm were measured for the purposes of Millimetron at frequencies of 600 GHz, 2.5 THz, and 3.8 THz. For gain bandwidth measurements we use two BWO’s operating at 600 GHz: one as the signal and the second as the LO. The noise temperature measurements were performed using a gas discharge laser as the LO and blackbodies at 77 K and 295 K as input signals. The devices studied consist of 3.5-nm-thick NbN bridges connected to thick (10 nm) high conductivity Au leads fabricated in situ. This method of fabricating devices has already proved promising by opening the diffusion cooling channel. [2] Fig. 1 shows a SEM photograph of a log-spiral antenna with an HEB at its apex. Fig. 1. Left: a SEM photograph of a log-spiral antenna with an HEB at its apex; right: a close-up of the HEB at the antenna apex. [1] S. A. Ryabchun, I. V. Tretyakov, M. I. Finkel, S. N. Maslennikov, N. S. Kaurova, V. A. Seleznev, B. M. Voronov, and G. N. Gol’tsman, NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling, Proc. of the 20 th Int. Symp. Space. Technol., Charlottesville, Virginia, USA, April 20 – 22, 2009. 218[2] S. A. Ryabchun * , I. V. Tretyakov, M. I. Finkel, S. N. Maslennikov, N. S. Kaurova, V. A. Seleznev, B. M. Voronov and G. N. Goltsman, Fabrication and characterisation of NbN HEB mixers with in situ gold contacts, Proc. of the 19 th Int. Symp. Space. Technol., Groningen, The Netherlands, April 28-30, 2008  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1393  
Permanent link to this record
 

 
Author Lobanov, Yury V.; Tong, Cheuk-yu E.; Hedden, Abigail S.; Blundell, Raymond; Gol’tsman, Gregory N. url  openurl
  Title Microwave-assisted measurement of the frequency response of terahertz HEB mixers with a Fourier transform spectrometer Type Conference Article
  Year 2010 Publication Proc. 21th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 21th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 420-423  
  Keywords  
  Abstract We describe a novel method of operation of the HEB direct detector for use with a Fourier Transform Spectrometer. Instead of elevating the bath temperature, we have measured the RF response of waveguide HEB mixers by applying microwave radiation to select appropriate bias conditions. In our experiment, a microwave signal is injected into the HEB mixer via its IF port. By choosing an appropriate injection level, the device can be operated close to the desired operating point. Furthermore, we have shown that both thermal biasing and microwave injection can reproduce the same spectral response of the HEB mixer. However, with the use of microwave injection, there is no need to wait for the mixer to reach thermal equilibrium, so characterisation can be done in less time. Also, the liquid helium consumption for our wet cryostat is also reduced. We have demonstrated that the signal- to-noise ratio of the FTS measurements can be improved with microwave injection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1394  
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Hübers, H.-W.; Petrenko, D.; Tretyakov, I.; Ryabchun, S.; Finkel, M.; Kaurova, N.; Gol’tsman, G.; Risacher, C.; Ricken, O.; Güsten, R. url  openurl
  Title Optimization of the intermediate frequency bandwidth in the THz HEB mixers Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 54  
  Keywords NbN HEB mixer  
  Abstract We report on the studies of the intermediate frequency (IF) bandwidth of quasi-optically coupled NbN hot-electron bolometer (HEB) mixers which are aimed at the optimization of the mixer performance at terahertz frequencies. Extension of the IF bandwidth due to the contribution of electron diffusion to the heat removal from NbN microbolometers has been already demonstrated for NbN HEBs at subterahertz frequencies. However, reducing the size of the microbolometer causes degradation of the noise temperature. Using in-situ multilayer manufacturing process we succeeded to improve the transparency of the contacts for electrons which go away from microbolometer to the metallic antenna. The improved transparency and hence coupling efficiency counterbalances the noise temperature degradation. HEB mixers were tested in a laboratory heterodyne receiver with a narrow-band cold filter which allowed us to eliminate direct detection. We used a local oscillator with a quantum cascade laser (QCL) at a frequency of 4.745 THz [1] which was developed for the H-Channel of the German Receiver for Astronomy at Terahertz frequencies (GREAT). Both the noise and gain bandwidth were measured in the IF range from 0.5 to 8 GHz using the hot-cold technique and preliminary calibrated IF analyzer with a tunable microwave filter. For optimized HEB geometry we found the noise bandwidth as large as 7 GHz. We compare our results with the conventional and the hot-spot mixer models and show that further extension of the IF bandwidth should be possible via improving the sharpness of the superconducting transition. The cross characterization of the HEB mixer was performed in the test bed of GREAT at the Max-Planck-Institut für Radioastronomie with the same QCL LO and delivered results which were consistent with the laboratory studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1359  
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Voronov, B. M.; Finkel, M.; Klapwijk, T. M.; Goltsman, G. url  openurl
  Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-THz radiation Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 71  
  Keywords carbon nanotubes, CNT  
  Abstract This work reports on the voltage response of asymmetric carbon nanotube devices to sub-THz radiation at the frequency of 140 GHz. The devices contain CNT’s, which are over their length partially suspended and partially Van der Waals bonded to a SiO 2 substrate, causing a difference in thermal contact. Different heat sinking of CNTs by source and drain gives rise to temperature gradient and consequent thermoelectric power (TEP) as such a device is exposed to the sub-THz radiation. Sign of the DC signal, its power and gate voltage dependence observed at room temperature are consistent with this scenario. At liquid helium temperature the observed response is more complex. DC voltage signal of an opposite sign is observed in a narrow range of gate voltages at low temperatures and under low radiation power. We argue that this may indicate a true photovoltaic response from small gap (less than 10meV) CNT’s, an effect never reported before. While it is not clear if the observed effects can be used to develop efficient THz detectors we note that the responsivity of our devices exceeds that of CNT based devices in microwave or THz range reported before at room temperature. Besides at 4.2 K notable increase of the sample conductance (at least four-fold) is observed. Our recent results with asymmetric carbon nanotube devices response to THz radiation (2.5 THz) will also be presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1361  
Permanent link to this record
 

 
Author Tretyakov, Ivan; Seliverstov, Sergey; Zolotov, Philipp; Kaurova, Natalya; Voronov, Boris; Finkel, Matvey; Goltsman, Gregory url  openurl
  Title Noise temperature and noise bandwidth of hot-electron bolometer mixer at 3.8 THz Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 77  
  Keywords NbN HEB mixer  
  Abstract We report on our recent results of double sideband (DSB) noise temperature and bandwidth measurements of quasi-optical hot electron bolometer (HEB) mixers at local oscillator frequency of 3.8 THz. The HEB mixers used in this work were made of a NbN thin film and had a superconducting transition temperature of about 10.3 K. To couple terahertz radiation, the NbN microbridge (0.2 μm long and 2 μm wide) was integrated with a planar logarithmic-spiral antenna. The mixer chip was glued to an elliptical Si lens clamped tightly to a mixer block mounted on the 4.2 K plate of a liquid helium cryostat. The terahertz radiation was fed into the HEB device through the cryostat window made of a 0.5 mm thick HDPE. A band-pass mesh filter was mounted on the 4.2 K plate to minimize the direct detection effect [1]. We used a gas discharge laser irradiating at 3.8 THz H 2 0 line as a local oscillator (LO). The LO power was combined with a black body broadband radiation via Mylar beam splitter. Our receiver allows heterodyne detection with an intermediate frequency (IF) of a several gigahertz which dictates usage of a wideband SiGe low noise amplifier [2]. The receiver IF output signal was further amplified at room temperature and fed into a square-law power detector through a band-pass filter. The DSB receiver noise temperature was measured using a conventional Y-factor technique at IF of 1.25 GHz and band of 40 MHz. Using wideband amplifiers at both cryogenic and room temperature stages we have estimated IF bandwidth of the HEB mixers used. The obtained results strengthen the position of the HEB mixer as one of the most important tools for submillimeter astronomy. This device operates well above the energy gap (at frequencies above 1 THz) where performance of state-of-the-art SIS mixers starts to degrade. So, HEB mixers are expected to be a device of choice in astrophysical observations (ground-, aircraft- and space-based) at THz frequencies due to its excellent noise performance and low LO power requirements. The HEB mixers will be in operation on Millimetron Space Observatory. References 1. J. J. A. Baselmans, A. Baryshev, S. F. Reker, M. Hajenius, J. R. Gao, T. M. Klapwijk, Yu. Vachtomin, S. Maslennikov, S. Antipov, B. Voronov, and G. Gol'tsman, Appl. Phys. Lett., 86, 163503 (2005). 2. Sander Weinreb, Life Fellow, IEEE, Joseph C. Bardin, Student Member, IEEE, and Hamdi Mani, “Design of Cryogenic SiGe Low-Noise Amplifiers”, IEEE Transactions on Microwave Theory and Techniques, 55, 11, 2007.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1362  
Permanent link to this record
 

 
Author Kinev, N. V.; Filippenko, L. V.; Ozhegov, R. V.; Gorshkov, K. N.; Gol’tsman, G. N.; Koshelets, V. P. url  openurl
  Title Superconducting integrated receiver with HEB-mixer Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 78  
  Keywords NbN HEB mixer, SIR, superconducting integrated receiver  
  Abstract Detectors in THz range with high sensitivity are very essential nowadays in different fields: space technology, atmospheric research, medicine and security. The most sensitive heterodyne detectors below 1 THz are the SIS- mixers due to its extremely high non-linearity and low noise level. Nevertheless, their effective range is strongly limited by superconducting gap Δ (about 1 THz for NbN circuits). Above 1 THz the detectors based on HEB (hot electron bolometers) are more effective [1]; their operation frequency is not limited from above and can be up to 70 THz [2]. HEBs can perform as both direct and heterodyne detectors (mixers). All HEB-mixers are used with external heterodyne, most useful are synthesizer with multipliers, quantum cascade lasers or far infrared lasers and backward-wave oscillators. Superconducting integrated receiver (SIR) is based on implementation of both SIS-miser and flux flow oscillator (FFO) acting as heterodyne at single chip [3]. Such receiver has been successfully applied at TELIS balloon-borne instrument for study of atmospheric constituents [4] and looks as very promising device for other THz missions including space research. Thus, there is a task to expand its operating range to higher frequencies. The frequency range of the SIR the operation is limited by both the SIS-mixer and the FFO maximum frequencies. The idea of present work is implementation of the HEB as a mixer in the SIR instead of the SIS traditionally used. We introduce the first results of integrating the HEB-mixer coupled to planar slot antenna with the FFO on one chip. For properly FFO operation the SIS harmonic mixer is used to phase lock the oscillator. The scheme of the SIR based on the HEB- mixer is presented in fig. 1. We have demonstrated the principal possibility of integration of both the HEB-mixer and the flux-flow oscillator on a single chip and succeed with sufficient power coupling for properly receiver operation. We measured the direct response of the HEB coupled to the antenna at THz frequencies by the FTS setup and noise temperature of the receiver with standard Y- factor measuring technique. The SIR operating range 450-620 GHz was achieved with the best uncorrected noise temperature of about 1000 К. One should note that it is still quite low frequencies for effective operation of the HEB-mixer; therefore we expect to obtain the better results for frequencies above 700 GHz (up to 1.2 THz). Another additional task is to increase the FFO frequencies by using NbTiN electrodes instead of NbN; currently we are working on this issue. This work was supported by the RFBR grant, the Ministry of Education and Science of Russia and Russian Academy of Sciences. References 1. D. Semenov, H.-W. Hubers, J. Schubert, G. N. Gol’tsman, A. I. Elantiev, B. M. Voronov, E. M. Gershenzon, Design and performance of the lattice-cooled hot-electron terahertz mixer, J. Appl. Phys. 88, 6758, 2000. 2. Maslennikov S. N., Finkel M. I., Antipov S. V. et al. Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70THz. Proc. 17 th international symposium on space terahertz technology. Paris, France: 2006.—may. Pp. 177 – 179. 3. V.P. Koshelets, S.V. Shitov. Integrated Superconducting Receivers. Supercond. Sci. Technol. Vol. 13. P. R53-R59. 2000. 4. Gert de Lange, Dick Boersma, Johannes Dercksen et.al. Development and Characterization of the Superconducting Integrated Receiver Channel of the TELIS Atmospheric Sounder. Supercond. Sci. Technol. vol. 23, No 4, 045016 (8pp). 2010.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1363  
Permanent link to this record
 

 
Author Shcherbatenko, Michael; Lobanov, Yury; Finkel, Matvey; Maslennikov, Sergey; Pentin, Ivan; Semenov, Alexander; Titova, Nadezhda; Kaurova, Natalya; Voronov, Boris M.; Rodin, Alexander; Klapwijk, Teunis M.; Gol’tsman, Gregory N. url  openurl
  Title Development of a 30 THz heterodyne receiver based on a hot-electron-bolometer mixer Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 122  
  Keywords mid-IR NbN HEB mixers, GaAs substrates  
  Abstract We present new Hot-Electron-Bolometer (HEB) mixers designed for mid-IR spectroscopy targeting astrophysical and geophysical observations where high sensitivity and spectral resolution are required. The mixers are made of an ultrathin NbN film deposited on GaAs substrates. Two entirely different types of the devices have been fabricated. The first type is based on a direct radiation coupling concept and the mixing devices are shaped as squares of 5×5 μm 2 (which corresponds to the diffraction limit at the chosen wavelength) and 10×10 μm 2 (which was used to establish a possible influence of the contact pads on the radiation absorption). The second type utilizes a spiral antenna designed with HFSS. The fabrication and layout of the devices as well as the performance comparison will be presented. During the experiments, the HEB mixer was installed on the cold plate of a LHe cryostat. A germanium window and an extended semi-spherical germanium lens are used to couple the radiation. The cryostat is equipped with a germanium optical filter of thickness 0.5 mm and with a center wavelength of 10.6 mμ. The incident power absorption is measured by using the isothermal method. As a Local Oscillator, a 10.6 micrometers line of a CO2 gas laser is used. We further characterize the frequency response of the spiral antenna with a FIR-spectrometer. The noise characteristics of the mixers are determined from a room temperature cold load and a heated black body at ~600 K as a hot load.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1364  
Permanent link to this record
 

 
Author Shurakov, Alexander; Tong, Cheuk-yu E.; Blundell, Raymond; Gol’tsman, Gregory url  openurl
  Title A microwave pumped HEB direct detector using a homodyne readout scheme Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 129  
  Keywords waveguide NbN HEB detector, NEP  
  Abstract We report the results of our study on the noise performance of a fast THz detector based on the repurpose of hot electron bolometer mixer (HEB). Instead of operating with an elevated bath temperature, microwave power is injected into the HEB device, which enhances the sensitivity of the detector and at the same time provide a mechanism for reading out impedance changes of the device induced by the modulated incident THz radiation [1]. We have demonstrated an improvement of the detector’s optical noise equivalent power (NEP). Furthermore, by introducing a homodyne readout scheme based on a room temperature microwave mixer, the dynamic range of the detector is increased. The HEB devices used in this work were made of 4 nm thick NbN film. The detector chips were installed into a waveguide mixer block fitted with a corrugated horn, mounted on the cold plate of a liquid helium cryostat. The HEBs were operated at a bath temperature of 4.2 K. The signal beam was terminated on black bodies at ambient and liquid nitrogen temperatures. A chopper wheel placed in front of the cryostat window operating at a frequency of 1.48 kHz modulated the input load temperature of the detector. A cold mesh filter, centered at 830 GHz, was used to define the input signal power bandwidth. Microwave was injected through a broadband directional coupler inside the cryostat. Our experiments were mostly conducted at a pump frequency of 1.5 GHz. The reflected microwave power from the HEB device was fed into a cryogenic low noise amplifier (LNA). The output of the LNA was connected to the RF input port of a room temperature microwave mixer, which beat the reflected signal from the HEB using a copy of the original 1.5 GHz injection signal in a homodyne demodulation scheme. The amplitude of the detected power was measured by a lock-in amplifier, which was synchronized to the chopper frequency. Preliminary results yield an optical NEP of ~1 pW/ Hz 1/2 which corresponds to an improvement of a factor of 3 compared to [1], driven mainly by a lowering of the system noise floor. The dynamic range was also increased by similar amount. References 1. A. Shurakov et al. “A Microwave Pumped Hot Electron Bolometric Direct Detector,” submitted on Oct 18, 2013 to Appl. Phys. Let.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1365  
Permanent link to this record
 

 
Author Tong, C. Edward; Trifonov, Andrey; Blundell, Raymond; Shurakov, Alexander; Gol’tsman, Gregory url  openurl
  Title A digital terahertz power meter based on an NbN thin film Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 170  
  Keywords waveguide NbN HEB mixers  
  Abstract We have further studied the effect of subjecting a superconducting Hot Electron Bolometer (HEB) element made from an NbN thin film to microwave radiation. Since the photon energy is weak, the microwave radiation does not simply heat the film, but generates a bi-static state, switching between the superconducting and normal states, upon the application of a small voltage bias. Indeed, a relaxation oscillation of a few MHz has previously been reported in this regime [1]. Switching between the superconducting and normal states modulates the reflected microwave pump power from the device. A simple homodyne setup readily recovers the spontaneous switching waveform in the time domain. The switching frequency is a function of both the bias voltage (DC heating) and the applied microwave power. In this work, we use a 0.8 THz HEB waveguide mixer for the purpose of demonstration. The applied microwave pump, coupled through a directional coupler, is at 1 GHz. Since the pump power is of the order of a few μW, a room temperature amplifier is sufficient to amplify the reflected pump power from the HEB mixer, which beats with the microwave source in a homodyne set-up. After further amplification, the switching waveform is passed onto a frequency counter. The typical frequency of the switching pulses is 3-5 MHz. It is found that the digital frequency count increases with higher microwave pump power. When the HEB mixer is subjected to additional optical power at 0.8 THz, the frequency count also increases. When we vary the incident optical power by using a wire grid attenuator, a linear relationship is observed between the frequency count and the applied optical power, over at least an order of magnitude of power. This phenomenon can be exploited to develop a digital power meter, using a very simple electronics setup. Further experiments are under way to determine the range of linearity and the accuracy of calibration transfer from the microwave to the THz regime. References 1. Y. Zhuang, and S. Yngvesson, “Detection and interpretation of bistatic effects in NbN HEB devices,” Proc. 13 th Int. Symp. Space THz Tech., 2002, pp. 463–472.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1366  
Permanent link to this record
 

 
Author Shcherbatenko, Michael; Lobanov, Yury; Benderov, Oleg; Shurakov, Alexander; Ignatov, Anton; Titova, Nadezhda; Finkel, Matvey; Maslennikov, Sergey; Kaurova, Natalya; Voronov, Boris M.; Rodin, Alexander; Klapwijk, Teunis M.; Gol'tsman, Gregory N. url  openurl
  Title Antenna-coupled 30 THz hot electron bolometer mixers Type Conference Article
  Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 26th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 27  
  Keywords HEB mixer, IR, mid-IR, 30 THz, antenna-coupled  
  Abstract We report on design and characterization of a superconducting Hot Electron Bolometer Mixer integrated with a logarithmic spiral antenna for mid-IR range observations. The antenna parameters have been adjusted to achieve the ultimate performance at 10 µm (30 THz) range where O3, NH3, CO2, CH4, N2O,…. lines in the Earth’s atmosphere, in planetary atmospheres and in the interstellar space can be observed. The HEB mixer is made of a thin NbN film deposited onto a GaAs substrate. To couple the radiation we rely on the quasioptical approach: the device is glued to a semi-spherical germanium lens with diameter~ 3 mm. A wet cryostat equipped with a germanium window and narrow band-pass filter is used to characterize the antenna and estimate the mixer performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1157  
Permanent link to this record
 

 
Author Shurakov, Alexander; Maslennikov, Sergey; Tong, Cheuk-yu E.; Gol’tsman, Gregory url  openurl
  Title Performance of an HEB direct detector utilizing a microwave reflection readout scheme Type Conference Article
  Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 26th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 36  
  Keywords HEB detector  
  Abstract We report the results of our study on the performance of a hot electron bolometric (HEB) direct detector, operated by a microwave pump. The HEB devices used in this work were made from NbN thin film deposited on high resistivity silicon with an in-situ fabrication process. The experimental setup employed is similar to the one described in [1]. The detector chips were glued to a silicon lens clamped to a copper holder mounted on the cold plate of a liquid helium cryostat. Thermal link between the lens and the holder was maintained by a thin indium shim. The HEBs were operated at a bath temperature of about 4.4 K. Conventional phonon pump, commonly realized by raising the bath temperature of the detector, was substituted by a microwave one. In this case, a CW microwave signal is injected to the device through a directional coupler connected directly to the detector holder. The power incident on the HEB device was typically 1-2 μW, and the pump frequency was in the range of 0.5-1.5 GHz. The signal sources were 2 black bodies held at temperatures of 295 K and 77 K. A chopper wheel placed in front of the cryostat window switched the input to the detector between the 2 sources. A modulation frequency of several kilohertz was chosen in order to reduce the effects of the HEB’s flicker noise. A cold mesh filter was used to define the input bandwidth of the detector. The reflected microwave signal from the HEB device was fed into a low noise amplifier, the output of which is connected to a room temperature Schottky microwave power detector. This Schottky detector, in conjunction with a lock-in amplifier, demodulated the input signal modulation from the copper wheel. As the input load was switched, the impedance of the HEB device at the microwave pump frequency also changed in response to the incident signal power variation. Therefore the reflected microwave power follows the incident signal modulation. The derived responsivity from this detection system nicely correlates with the HEB impedance. In order to provide a quantitative description of the impedance variation of the HEB device and the impact of a microwave pump, we have numerically solved the heat balance equations written for the NbN bridge and its surrounding thermal heat sink [2]. Our model also accounts for the impact of the operating frequency of the detector because of non-uniform absorption of low-frequency photons across the NbN bridge [3]. In our measurements we varied the signal source wavelength from 2 mm down to near infrared range, and hence we indirectly performed the impedance measurements at frequencies below, around and far beyond the superconducting gap. Preliminary results show good agreement between the experiment and theoretical prediction. Further measurements are still in progress. [1] A. Shurakov et al., “A Microwave Reflection Readout Scheme for Hot Electron Bolometric Direct Detector”, to appear in IEEE Trans. THz Sci. Tech., 2015. [2] S. Maslennikov, “RF heating efficiency of the terahertz superconducting hot-electron bolometer”, http://arxiv.org/pdf/1404.5276v5.pdf, 2014. [3] W. Miao et al., “Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges”, Appl. Phys. Let., 104, 052605, 2014.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1158  
Permanent link to this record
 

 
Author Tretyakov, I.; Maslennikov, S.; Semenov, A.; Safir, O.; Finkel, M.; Ryabchun, S.; Kaurova, N.; Voronov, B.; Goltsman, G.; Klapwijk, T. M. url  openurl
  Title Impact of operating conditions on noise and gain bandwidth of NbN HEB mixers Type Conference Article
  Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 26th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 39  
  Keywords NbN HEB mixers  
  Abstract Hot-electron bolometer mixers (HEB’s) are the most promising devices as mixing element for terahertz spectroscopy and astronomy at frequencies beyond 1.4 THz. They have a low noise temperature and low demands on local oscillator (LO) power. 1,2 An important limitation is the IF bandwidth, of the order of a few GHz, and which in principle depends on energy relaxation due to electron- phonon processes and on diffusion-cooling. It has been proposed by Prober that a reduction in length of the HEB would lead to an increased bandwidth. 3 This appeared to be achieved by Tretyakov et al by measuring the gain bandwidth close to the critical temperature of the NbN. 2 Unfortunately, the noise bandwidth of similar devices operated at temperatures around 4.2 K appear not depend on the length. The fundamental problem to be addressed is the position-dependent superconducting state of the HEB- devices under operating conditions, which determines the conditions for the cooling of the hot quasiparticles. Some progress has been made by Barends et al in a semi-empirical model to describe the I,V curves under operating conditions at a bath temperature around 4.2 K. 4 In more recent work Vercruyssen et al have analyzed the I,V curve, without any LO-equivalent bias, of a model NSN system. 5 This work suggests that the most appropriate model for an HEB under operating conditions is that of a potential-well in the superconducting gap in the center of the NbN, analogous the bimodal superconducting state described by Vercruyssen et al. Hot quasiparticles in the well can not diffuse out and can only cool by electron-phonon processes, those with higher energies than the heights of the walls of the well can diffuse out. Using this working hypothesis we have carried out experiments on a sub-micrometer NbN bridge connected to a gold (Au) planar spiral antenna. An in situ process is used to deposit Au on NbN. The Au is removed in the center to define the uncovered NbN, which will act as the superconducting mixer itself. The antenna is deposited on the remaining Au layer on the NbN. The Au contacts suppress the energy gap of the NbN film located underneath the gold layer 7,8 . The measured resistive transition is shown in Fig.1. It clearly shows a T c of the bilayer at 6.2 K and the resistive transition of the NbN itself around 9 K. In addition we show the measured noise bandwidth (red squares) for different bath temperatures. Clearly the noise bandwidth increases strongly by increasing the bath temperature from 5 K to 8 K, up to 13 GHz. We interpret this pattern as evidence for improved out-diffusion of hot electrons due to normal banks and a shallow superconducting potential well compared to k B T. As expected the noise temperature in this regime is much bigger than when biased at 4.2 K. R EFERENCES 1 W. Zhang, P. Khosropanah, J. R. Gao, E. L. Kollberg, K. S. Yngvesson, T. Bansal, R. Barends, and T. M. Klapwijk Appl. Phys. Lett. 96, 111113, (2010). 2 Ivan Tretyakov, Sergey Ryabchun, Matvey Finkel, Anna Maslennikova, Natalia Kaurova, Anastasia Lobastova, Boris Voronov, and Gregory Gol’tsman Appl. Phys. Lett. 98, 033507 (2011). 3 D. E. Prober, Appl. Phys. Lett. 62, 2119 (1992). 4 R. Barends, M. Hajenius, J. R. Gao, and T. M. Klapwijk, Appl. Phys. Lett. 87, 263506 (2005). 5 N. Vercruyssen, T. G. A. Verhagen, M. G. Flokstra, J. P. Pekola, and T. M. Klapwijk Physical Review B 85, 224503 (2012).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1159  
Permanent link to this record
 

 
Author Trifonov, Andrey; Tong, C. Edward; Lobanov, Yury; Kaurova, Natalia; Blundell, Raymond; Gol’tsman, Gregory url  openurl
  Title An investigation of the DC and IF performance of silicon-membrane HEB mixer elements Type Conference Article
  Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 26th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 40  
  Keywords silicon-membrane HEB waveguide mixer  
  Abstract We report on our initial development towards a 2x2 multi-pixel HEB waveguide mixer for operation at 1.4 THz. We have successfully fabricated devices comprising an NbN bridge integrated with antenna test structure using a silicon membrane as the supporting substrate. DC measurements of the test chips demonstrate critical current from 0.1 – 1mA depending on the size of device, with T c of around 10 K and ΔTc ~ 0.8 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1160  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Kovalyuk, V.; Korneev, A.; Gol'tsman, G. N. url  openurl
  Title Photon counting detector as a mixer with picowatt local oscillator power requirement Type Conference Article
  Year 2016 Publication Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 27th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 110  
  Keywords SSPD mixer, SNSPD  
  Abstract At the current stage of the heterodyne receiver technology, great attention is paid to the development of detector arrays and matrices comprising many detectors on a single wafer. However, any traditional THz detector (such as SIS, HEB, or Schottky diode) requires quite a noticeable amount of Local Oscillator (LO) power which scales with the matrix size, and the total amount of the LO power needed is much greater than that available from compact and handy solid state sources. Substantial reduction of the LO power requirement may be obtained with a photon-counting detector used as a mixer. This approach, mentioned earlier in [1,2] provides a number of advantages. Thus, sensitivity of such a detector would be at the quantum limit (because of the photon-counting nature of the detector) and just a few LO photons for the mixing would be required leading to a possible breakthrough in the matrix receiver development. In addition, the receiver could be easily tuned from the heterodyne to the direct detection mode without any loss in its sensitivity with the latter limited only by the quantum efficiency of the detector used. We demonstrate such a technique with the use of the Superconducting Nanowire Single Photon Detector(SNSPD)[3] irradiated by both 1.5 μm LO with a tiny amount of power (from a few picowatts down to femtowatts) facing the detector, and the test signal with a power significantly less than that of the LO. The SNSPD was operated in the current mode and the bias current was slightly below its critical value. Irradiating the detector with either the LO or the signal source produced voltage pulses which are statistically evenly distributed and could be easily counted by a lab counter or oscilloscope. Irradiating the detector by the both lasers simultaneously produced pulses at the frequency f m which is the exact difference between the frequencies at which the two lasers operate. f m could be deduced form either counts statistics integrated over a sufficient time interval or with the help of an RF spectrum analyzer. In addition to the chip SNSPD with normal incidence coupling, we use the detectors with a travelling wave geometry design [4]. In this case a niobium nitride nanowire is placed on the top of a nanophotonic waveguide, thus increasing the efficient interaction length. Integrated device scheme allows us to measure the optical losses with high accuracy. Our approach is fully scalable and, along with a large number of devices integrated on a single chip can be adapted to the mid and far IR ranges. This work was supported in part by the Ministry of Education and Science of the Russian Federation, contract no. 14.B25.31.0007 and by RFBR grant # 16-32-00465. 1. Leaf A. Jiang and Jane X. Luu, ―Heterodyne detection with a weak local oscillator, Applied Optics Vol. 47, Issue 10, pp. 1486-1503 (2008) 2. Matsuo H. ―Requirements on Photon Counting Detectors for Terahertz Interferometry J Low Temp Phys (2012) 167:840–845 3. A. Semenov, G. Gol'tsman, A. Korneev, “Quantum detection by current carrying superconducting film”, Physica C, 352, pp. 349-356 (2001) 4. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, ―Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths., Sci. Rep., vol. 5, p. 10941, (2015).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1203  
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. url  openurl
  Title Gap frequency and photon absorption in a hot electron bolometer Type Conference Article
  Year 2016 Publication Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 27th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 121  
  Keywords NbN HEB; Si membrane  
  Abstract The superconducting energy gap is a crucial parameter of a superconductor when used in mixing applications. In the case of the SIS mixer, the mixing process is efficient for frequencies below the energy gap, whereas, in the case of the HEB mixer, the mixing process is most efficient at frequencies above the gap, where photon absorption takes place more readily. We have investigated the photon absorption phenomenon around the gap frequency of HEB mixers based on NbN films deposited on silicon membranes. Apart from studying the pumped I-V curves of HEB devices, we have also probed them with microwave radiation, as previously described [1]. At frequencies far below the gap frequency, the pumped I-V curves show abrupt switching between the superconducting and resistive states. For the NbN HEB mixers we tested, which have critical temperatures of ~9 K, this is true for frequencies below about 400 GHz. As the pump frequency is increased beyond 400 GHz, the resistive state extends towards zero bias and at some point a small region of negative differential resistance appears close to zero bias. In this region, the microwave probe reveals that the device impedance is changing randomly with time. As the pump frequency is further increased, this random impedance change develops into relaxation oscillations, which can be observed by the demodulation of the reflected microwave probe. Initially, these oscillations take the form of several frequencies grouped together under an envelope. As we approach the gap frequency, the multiple frequency relaxation oscillations coalesce into a single frequency of a few MHz. The resultant square-wave nature of the oscillation is a clear indication that the device is in a bi-stable state, switching between the superconducting and normal state. Above the gap frequency, it is possible to obtain a pumped I-V curve with no negative differential resistance above a threshold pumping level. Below this pumping level, the device demonstrates bi-stability, and regular relaxation oscillation at a few MHz is observed as a function of pump power. The threshold pumping level is clearly related to the amount of power absorbed by the device and its phonon cooling. From the above experiment, we can derive the gap frequency of the NbN film, which is 585 GHz for our 6 μm thin silicon membrane-based device. We also confirm that the HEB mixer is not an efficient photon absorber for radiation below the gap frequency. 1. A. Trifonov et al., “Probing the stability of HEB mixers with microwave injection”, IEEE Trans. Appl. Supercond., vol. 25, no. 3, June 2015.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1204  
Permanent link to this record
 

 
Author Merkel, H. F.; Yagoubov, P. A.; Kroug, M.; Khosropanah, P.; Kollberg, E. L.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Noise temperature and absorbed LO power measurement methods for NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Conference Article
  Year 1998 Publication Proc. 28th European Microwave Conf. Abbreviated Journal (up) Proc. 28th European Microwave Conf.  
  Volume 1 Issue Pages 294-299  
  Keywords NbN HEB mixers  
  Abstract In this paper the absorbed LO power requirements and the noise performance of NbN based phonon-cooled hot electron bolometric (HEB) quasioptical mixers are investigated for RF frequencies in the 0.55-1.1 range The minimal measured DSB noise temperatures are about 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The increase in noise temperature at 1.1THz is attributed to water absorption. The absorbed LO power is measured using a calorimetric approach. The results are subsequently corrected for lattice heating. These values are compared to results of a novel one dimensional hot spot mixer models and to a more traditional isotherm method which tends to underestimate the absorbed LO power for small bias powers. Typically a LO power between 50nW and 100nW is needed to pump the device to the optimal operating point.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 28th European Microwave Conference  
  Notes Approved no  
  Call Number Serial 1580  
Permanent link to this record
 

 
Author Titova, N; Kardakova, A.; Tovpeko, N; Ryabchun, S.; Mandal, S.; Morozov, D.; Klemencic, G. M.; Giblin, S.R.; Williams, O. A.; Goltsman, G. N. openurl 
  Title Superconducting diamond films as perspective material for direct THz detectors Type Abstract
  Year 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 28th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 82  
  Keywords KID, HEB, superconducting diamond films, boron-doped diamond films, Al, TiN, Si substrates, NEP  
  Abstract Superconducting films with a high resistivity in the normal state have established themselves as the best materials for direct THz radiation sensors, such as kinetic inductance detectors (KIDs) [1] and hot electron bolometers (nano-HEBs) [2]. The primary characteristics of the future instrument such as the sensitivity and the response time are determined by the material parameters such as the electron-phonon (e-ph) interaction time, the electron density and the resistivity of the material. For direct detectors, such as KIDs and nano-HEBs, to provide a high sensitivity and low noise one prefer materials with long e-ph relaxation times and low values of the electron density. As a potential material for THz radiation detection we have studied superconducting diamond films. A significant interest to diamond for the development of electronic devices is due to the evolution of its properties with the boron dopant concentration. At a high boron doping concentration, n B ~5·10 20 cm -3 , diamond has been reported to become a superconducting with T c depending on the doping level. Our previous study of energy relaxation in single-crystalline boron-doped diamond films epitaxially grown on a diamond shows a remarkably slow energy-relaxation at low temperatures. The electron-phonon cooling time varies from 400 ns to 700 ns over the temperature range 2.2 K to 1.7 K [3]. In superconducting materials such as Al and TiN, traditionally used in KIDs, the e-ph cooling times at 1.7 K correspond to ~20 ns [4] and ~100 ns [5], correspondingly. Such a noticeable slow e-ph relaxation in boron-doped diamond, in combination with a low value of carrier density (~10 21 cm -3 ) in comparison with typical metals (~10 23 cm -3 ) and a high normal state resistivity (~1500 μΩ·cm) confirms a potential of superconducting diamond for superconducting bolometers and resonator detectors. However, the price and the small substrate growth are of single crystal diamond limit practical applications of homoepitaxial diamond films. As an alternative way with more convenient technology, one can employ heteroepitaxial diamond films grown on large-size Si substrates. Here we report about measurements of e-ph cooling times in superconducting diamond grown on silicon substrate and discuss our expectations about the applicability of boron-doped diamond films to superconducting detectors. Our estimation of limit value of noise-equivalent power (NEP) and the energy resolution of bolometer made from superconducting diamond is order 10 -17 W/Hz 1/2 at 2 K and the energy resolution is of 0.1 eV that corresponds to counting single-photon up to 15 um. The estimation was obtained by using the film thickness of 70 nm and ρ ~ 1500 μΩ·cm, and the planar dimensions that are chosen to couple bolometer with 75 Ω log-spiral antenna. Although the value of NEP is far yet from what might like to have for certain astronomical applications, we believe that it can be improved by a suitable fabrication process. Also the direct detectors, based on superconducting diamond, will offer low noise performance at about 2 K, a temperature provided by inexpensive close-cycle refrigerators, which provides another practical advantage of development and application of these devices. [1] P.K. Day, et. al, Nature, 425, 817, 2003. [2] J. Wei, et al, Nature Nanotech., 3, 496, 2008. [3] A. Kardakova, et al, Phys. Rev. B, 93, 064506, 2016. [4] P. Santhanam and D. Prober, Phys. Rev. B, 29, 3733, 1984 [5] A. Kardakova, et al, Appl. Phys. Lett, vol. 103, p. 252602, 2013.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1173  
Permanent link to this record
 

 
Author Seliverstov, Sergey V.; Rusova, Anastasia A.; Kaurova, Natalya S.; Voronov, Boris M.; Goltsman, Gregory N. openurl 
  Title AC-biased superconducting NbN hot-electron bolometer for frequency-domain multiplexing Type Conference Article
  Year 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 28th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 120-122  
  Keywords NbN HEB mixer  
  Abstract We present the results of characterization of fast and sensitive superconducting antenna-coupled THz direct detector based on NbN hot-electron bolometer (HEB) with AC-bias. We discuss the possibility of implementation of the AC-bias for design the readout system from the multi-element arrays of HEBs using standard technique of frequency-domain multiplexing. We demonstrate experimentally that this approach does not lead to significant deterioration of the HEB sensitivity compared with the value obtained for the same detector with DC- bias. Results of a numerical calculations of the HEB responsivity at AC-bias are in a good agreement with the experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1174  
Permanent link to this record
 

 
Author Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Desmaris, V.; Belitsky, V.; Gol’tsman, G. openurl 
  Title Gain bandwidth of NbN HEB mixers on GaN buffer layer operating at 2 THz local oscillator frequency Type Conference Article
  Year 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 28th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 147-148  
  Keywords NbN HEB mixers, GaN buffer-layer, IF bandwidth  
  Abstract In this paper, we present IF bandwidth measurement results of NbN HEB mixers, which are employing NbN thin films grown on a GaN buffer-layer. The HEB mixers were operated in the heterodyne regime at a bath temperature of approximately 4.5 K and with a local oscillator operating at a frequency of 2 THz. A quantum cascade laser served as the local oscillator and a reference synthesizer based on a BWO generator (130-160 GHz) and a semiconductor superlattice (SSL) frequency multiplier was used as a signal source. By changing the LO frequency it was possible to record the IF response or gain bandwidth of the HEB with a spectrum analyzer at the operation point, which yielded lowest noise temperature. The gain bandwidth that was recorded in the heterodyne regime at 2 THz amounts to approximately 5 GHz and coincides well with a measurement that has been performed at elevated bath temperatures and lower LO frequency of 140 GHz. These findings strongly support that by using a GaN buffer-layer the phonon escape time of NbN HEBs can be significantly lower as compared to e.g. Si substrate, thus, providing higher gain bandwidth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1175  
Permanent link to this record
 

 
Author Vachtomin, Yu. B.; Antipov, S. V.; Kaurova, N. S.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Svechnikov, S. I.; Grishina, E. V.; Voronov, B. M.; Gol'tsman, G. N. doi  openurl
  Title Noise temperature, gain bandwidth and local oscillator power of NbN phonon-cooled HEB mixer at terahertz frequenciess Type Conference Article
  Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal (up) Proc. 29th IRMMW / 12th THz  
  Volume Issue Pages 329-330  
  Keywords  
  Abstract We present the performances of HEB mixers based on 3.5 nm thick NbN film integrated with log-periodic spiral antenna. The double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. The gain bandwidth of the mixer is 4.2 GHz and the noise bandwidth is 5 GHz. The local oscillator power is 1-3 /spl mu/W for mixers with different active area.  
  Address Karlsruhe, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Karlsruhe, Germany Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ nt_ifb_lopow_qoheb_karlsruhe_2004 Serial 354  
Permanent link to this record
 

 
Author Richter, H.; Semenov, A.; Hubers, H.-W.; Smirnov, K.; Gol’tsman, G.; Voronov, B. url  doi
openurl 
  Title Phonon cooled hot-electron bolometric mixer for 1-5 THz Type Conference Article
  Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal (up) Proc. 29th IRMMW / 12th THz  
  Volume Issue Pages 241-242  
  Keywords NbN HEB mixers  
  Abstract Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently built for SOFIA and Herschel, superconducting hot electron bolometers (HEB) are used to achieve this goal at frequencies above 1.4 THz. In order to optimize the performance for this frequency of hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0/spl times/0.2 /spl mu/m/sup 2/ incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1506  
Permanent link to this record
 

 
Author Rubtsova, I.; Korneev, A.; Matvienko, V.; Chulkova, G.; Milostnaya, I.; Goltsman, G.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Spectral sensitivity, quantum efficiency, and noise equivalent power of NbN superconducting single-photon detectors in the IR range Type Conference Article
  Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal (up) Proc. 29th IRMMW / 12th THz  
  Volume Issue Pages 461-462  
  Keywords NbN SSPD, SNSPD  
  Abstract We have developed nanostructured NbN superconducting single-photon detectors capable of GHz-rate photon counting in the 0.4 to 5 /spl mu/m wavelength range. Quantum efficiency of 30%, dark count rate 3/spl times/10/sup -4/ s/sup -1/, and NEP=10/sup -20/ W/Hz/sup -1/2/ have been measured at the 1.3-/spl mu/m wavelength for the device operating at 2.0 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1507  
Permanent link to this record
 

 
Author Tretyakov, Ivan; Kaurova, N.; Voronov, B. M.; Goltsman, G. N. url  openurl
  Title About effect of the temperature operating conditions on the noise temperature and noise bandwidth of the terahertz range NbN hot-electron bolometers Type Abstract
  Year 2018 Publication Proc. 29th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 29th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 113  
  Keywords NbN HEB mixer  
  Abstract Results of an experimental study of the noise temperature (Tn) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (Tb) and NbN bridge length are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (Tc) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature Tb close to Tc was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at Tb ≪ Tc for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1313  
Permanent link to this record
 

 
Author Sych, Denis; Shcherbatenko, Michael; Elezov, Michael; Goltsman, Gregory N. openurl 
  Title Towards the improvement of the heterodyne receiver sensitivity beyond the quantum noise limit Type Conference Article
  Year 2018 Publication Proc. 29th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 29th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 245-247  
  Keywords standard quantum limit, sub-SQL quantum receiver, Kennedy receiver, SSPD, SNSPD  
  Abstract Noise reduction in heterodyne receivers of the terahertz range is an important issue for astronomical applications. Quantum fluctuations, also known as shot noise, prohibit errorless measurements of the amplitude of electro-magnetic waves, and introduce the so-called standard quantum limit (SQL) on the minimum error of the heterodyne measurements. Nowadays, the sensitivity of modern heterodyne receivers approaches the SQL, and the growing demand for the improvement of measurement precision stimulates a number of both theoretical and experimental efforts to design novel measurement techniques aimed at overcoming the SQL. Here we demonstrate the first steps towards the practical implementation of a sub-SQL quantum receiver. As the principal resources, it requires a highly efficient single-photon counting detector and an interferometer-based scheme for mixing the signal with a low-power local oscillator. We describe the idea of such receiver and its main components.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1314  
Permanent link to this record
 

 
Author Ekström, H.; Kroug, M.; Belitsky, V.; Kollberg, E.; Olsson, H.; Goltsman, G.; Gershenzon, E.; Yagoubov, P.; Voronov, B.; Yngvesson, S. url  openurl
  Title Hot electron mixers for THz applications Type Conference Article
  Year 1996 Publication Proc. 30th ESLAB Abbreviated Journal (up) Proc. 30th ESLAB  
  Volume Issue Pages 207-210  
  Keywords NbN HEB mixers  
  Abstract We have measured the noise performance of 35 A thin NbN HEB devices integrated with spiral antennas on antireflection coated silicon substrate lenses at 620 GHz. From the noise measurements we have determined a total conversion gain of the receiver of—16 dB, and an intrinsic conversion of about-10 dB. The IF bandwidth of the 35 A thick NbN devices is at least 3 GHz. The DSB receiver noise temperature is less than 1450 K. Without mismatch losses, which is possible to obtain with a shorter device, and with reduced loss from the beamsplitter, we expect to achieve a DSB receiver noise temperature of less ‘than 700 K.  
  Address Noordwijk, Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Rolfe, E. J.; Pilbratt, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Submillimetre and Far-Infrared Space Instrumentation  
  Notes Approved no  
  Call Number Serial 1606  
Permanent link to this record
 

 
Author Bryerton, E.; Percy, R.; Bass, R.; Schultz, J.; Oluleye, O.; Lichtenberger, A.; Ediss, G. A.; Pan, S. K.; Goltsman, G. N. url  doi
openurl 
  Title Receiver measurements of pHEB beam lead mixers on 3-μm silicon Type Conference Article
  Year 2005 Publication Proc. 30th IRMMW / 13th THz Abbreviated Journal (up) Proc. 30th IRMMW / 13th THz  
  Volume Issue Pages 271-272  
  Keywords  
  Abstract We report on receiver noise measurement results of phonon-cooled HEB beam lead mixers on 3 μm thick silicon. This type of ultra-thin mixer chip with integrated beam leads allows easy assembly into a block and holds great promise for array integration. Receiver measurements from 600-720 GHz are presented with a minimum noise temperature of 500 K at 666 GHz. These results verify the mixer performance of the SOI processing techniques allowing for further design and integration of SOI pHEB mixers in receivers operating above 1 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics  
  Notes Approved no  
  Call Number Serial 1460  
Permanent link to this record
 

 
Author Tovpeko, N. A.; Trifonov, A. V.; Semenov, A. V.; Antipov, S. V.; Kaurova, N. S.; Titova, N. A.; Goltsman, G. N. url  openurl
  Title Bandwidth performance of a THz normal metal TiN bolometer-mixer Type Conference Article
  Year 2019 Publication Proc. 30th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 30th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 102-103  
  Keywords TiN normal metal bolometer, NMB  
  Abstract We report on the bandwidth performance of the normal metal TiN bolometer-mixer on top of an Al 2 O 3 substrate, which is capable to operate in a wide range of bath temperatures from 77 K – 300 K. The choice of the combination TiN / Al 2 O 3 is related to an advanced heat transport between the film and the substrate in this pair and the sufficient temperature coefficient of resistance. The data were taken at 132.5 – 145.5 GHz with two BWOs as a signal and an LO source. Measurements were taken on TiN films of different thickness starting from 20 nm down to 5 nm coupled into a spiral Au antenna, which improves matching of incoming radiation with the thin TiN fim. Our experiments demonstrate effective heat coupling from a TiN thin film to an Al 2 O 3 substrate (111) boosting gain bandwidth (GB) of TiN bolometer up to 6 GHz for 5 nm thin film. Current results indicate weak temperature dependence of GB on the bath temperature of the TiN bolometer. Theoretical estimations of GB performance meet with experimental data for 5 nm thin TiN films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1279  
Permanent link to this record
 

 
Author Kuzin, Aleksei; Elmanov, Ilia; Kovalyuk, Vadim; An, Pavel; Goltsman, Gregory doi  isbn
openurl 
  Title Silicon nitride focusing grating coupler for input and output light of NV-centers Type Conference Article
  Year 2020 Publication Proc. 32-nd EMSS Abbreviated Journal (up) Proc. 32-nd EMSS  
  Volume Issue Pages 349-353  
  Keywords NV-centers, focusing grating coupler  
  Abstract Here we presented the numerical results for the calculation of focusing grating coupler efficiency in the visible wavelength range. Using the finite element method, the optimal geometric parameters, including filling factor and grating period for a central wavelength of 637 nm, were found. Obtained results allow to input/output single-photon radiation from NV-centers, and can be used for research and development of a scalable on-chip quantum optical computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2724-0029 ISBN 978-88-85741-44-7 Medium  
  Area Expedition Conference 32nd European Modeling & Simulation Symposium  
  Notes Approved no  
  Call Number Serial 1841  
Permanent link to this record
 

 
Author Elmanov, Ilia; Elmanova, Anna; Kovalyuk, Vadim; An, Pavel; Goltsman, Gregory doi  isbn
openurl 
  Title Integrated contra-directional coupler for NV-centers photon filtering Type Conference Article
  Year 2020 Publication Proc. 32-nd EMSS Abbreviated Journal (up) Proc. 32-nd EMSS  
  Volume Issue Pages 354-360  
  Keywords NV-centers, nanodiamonds, quantum photonic integrated circuits, contra-direction coupler, Bragg gratings  
  Abstract We modelled an integrated optical contra-directional coupler on silicon nitride platform. Performance of the filter was studied depending on different parameters, including the grating period and the height of teeth of the Bragg grating near 637 nm operation wavelength. The obtained results can be used for a design and fabrication of quantum photonic integrated circuits with on-chip single-photon NV-centers in nanodiamonds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2724-0029 ISBN 978-88-85741-44-7 Medium  
  Area Expedition Conference 32nd European Modeling & Simulation Symposium  
  Notes Approved no  
  Call Number Serial 1839  
Permanent link to this record
 

 
Author Elmanov, Ilia; Elmanova, Anna; Kovalyuk, Vadim; An, Pavel; Goltsman, Gregory doi  isbn
openurl 
  Title Silicon nitride photonic crystal cavity coupled with NV-centers in nanodiamonds Type Conference Article
  Year 2020 Publication Proc. 32-nd EMSS Abbreviated Journal (up) Proc. 32-nd EMSS  
  Volume Issue Pages 344-348  
  Keywords  
  Abstract The development of integrated quantum photonics requires a high efficient excitation and coupling of a single photon source with on-chip devices. In this paper, we show our results of modelling for high-Q photonic crystal cavity, optimized for zero phonon line emission of NV-centers in nanodiamonds. Modelling was performed for the silicon nitride platform and obtained a quality factor equals to 6136 at 637 nm wavelength.  
  Address NV-centers, nanodiamonds  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2724-0029 ISBN 978-88-85741-44-7 Medium  
  Area Expedition Conference 32nd European Modeling & Simulation Symposium  
  Notes Approved no  
  Call Number Serial 1840  
Permanent link to this record
 

 
Author Yagoubov, P.; Hübers, H.-W.; Gol’tsman, G.; Semenov, A.; Gao, J.; Hoogeveen, R.; de Graauw, T.; Birk, M.; Selig, A.; de Korte, P. url  isbn
openurl 
  Title Hot-electron bolometer mixers – technology for far-infrared heterodyne instruments in future atmospheric chemistry missions Type Conference Article
  Year 2001 Publication Proc. 3rd Int. Symp. Submillimeter Wave Earth Observation From Space Abbreviated Journal (up) Proc. 3rd Int. Symp. Submillimeter Wave Earth Observation From Space  
  Volume Issue Pages 57-69  
  Keywords HEB mixers  
  Abstract  
  Address Delmenhorst  
  Corporate Author Thesis  
  Publisher Logos-Verlag Place of Publication Editor Buehler, S.; Berlin  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 3-89722-700-2 Medium  
  Area Expedition Conference International Symposium on Submillimeter Wave Earth Observation from Space, ISSMWEOS01  
  Notes Approved no  
  Call Number Serial 1549  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Optical coupling and conversion gain for NbN HEB mixer at THz frequencies Type Conference Article
  Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal (up) Proc. 4-th Int. Semicond. Device Research Symp.  
  Volume Issue Pages 47-50  
  Keywords NbN HEB mixers  
  Abstract  
  Address Charlottesville, Virginia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1601  
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Smirnov, K. V.; Goltsman, G. N.; Gershenson, E. M.; Yngvesson, K. S. url  openurl
  Title Direct measurements of electron energy relaxation times at an AlGaAs/GaAs heterointerface in the optical phonon scattering range Type Conference Article
  Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal (up) Proc. 4-th Int. Semicond. Device Research Symp.  
  Volume Issue Pages 55-58  
  Keywords 2DEG, AlGaAs/GaAs heterostructures  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1602  
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Smirnov, K. V.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Yngvesson, K. S. url  openurl
  Title Hot electron bolometer detectors and mixers based on a superconducting-two-dimensional electron gas-superconductor structure Type Conference Article
  Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal (up) Proc. 4-th Int. Semicond. Device Research Symp.  
  Volume Issue Pages 163-166  
  Keywords S-2DEG-S HEB mixers, detectors, AlGaAs/GaAs heterostructures, NbN  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1603  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N. url  openurl
  Title Hot electron superconductive mixers Type Conference Article
  Year 1993 Publication Proc. 4th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 4th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 618-622  
  Keywords HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1656  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Elant'iev, A. I.; Karasik, B. S.; Gershenzon, E. M. url  openurl
  Title Antenna – coupled superconducting electron-heating bolometer Type Conference Article
  Year 1993 Publication Proc. 4th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 4th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 623-628  
  Keywords HEB  
  Abstract We propose a novel antenna-coupled superconducting bolometer based on electron-heating in the resistive state. A short narrow ultrathin super- conducting film strip (sized approximately 4x1x0.01 pm 3 ), which is in good thermal contact with the thermostat, serves as a resistive load for infrared or submillimeter current. In contrast to conventional isothermal super- conducting bolometers electron-heating ones can have a higher sensitivity which grows when filni. thickness is reduced. Response time of electron- heating bolometer does not depend on heat transfer from the film to the enviroment. To calculate the sensitivity (NEP), we have used experimental data on wideband Al, Nb and NbN bolometers which have the same un- derlying physical mechanism. The bolom.eters have been made in the form of a structure composed of a number of long narrow strips. The values of for Al, NEP have been found to be 1.5 . 113 -16 1 140 -15 ) and 2 . 10 – 14werT,-1/2 – Nb and NbN respectively. In the paper, the prospects are also discussed of improving the picosecond YBaCuO detector, developed recently. NEP value of the detector, if combined with a microantenna, can reach the order of 10- •ilz-v2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1657  
Permanent link to this record
 

 
Author Antipov, S. V.; Vachtomin, Yu. B.; Maslennikov, S. N.; Smirnov, K. V.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Goltsman, G. N. url  doi
openurl 
  Title Noise performance of quasioptical ultrathin NbN hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
  Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal (up) Proc. 5-th MSMW  
  Volume 2 Issue Pages 592-594  
  Keywords NbN HEB mixers  
  Abstract To put space-based and airborne heterodyne instruments into operation at frequencies above 1 THz the superconducting NbN hot-electron bolometer (HEB) will be incorporated into heterodyne receiver as a mixer. At frequencies above 1.3 THz the sensitivity of the NbN HEB mixers outperform the one of the Schottky diodes and SIS-mixers, and the receiver noise temperature of the NbN HEB mixers increase with frequency. In this paper we present the results of the noise temperature measurements within one batch of NbN HEB mixers based on 3.5 mn thick superconducting NbN film grown on Si substrate with MgO buffer layer at the LO frequencies 2.5 THz and 3.8 THz.  
  Address Kharkov, Ukraine  
  Corporate Author Thesis  
  Publisher Place of Publication Kharkov, Ukraine Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)  
  Notes Approved no  
  Call Number Serial 351  
Permanent link to this record
 

 
Author Maslennikov, S. N.; Morozov, D. V.; Ozhegov, R. V.; Smirnov, K. V.; Okunev, O. V.; Gol’tsman, G. N. url  doi
openurl 
  Title Imaging system for submillimeter wave range based on AlGaAs/GaAs hot electron bolometer mixers Type Conference Article
  Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal (up) Proc. 5-th MSMW  
  Volume 2 Issue Pages 558-560  
  Keywords AlGaAs/GaAs HEB mixers  
  Abstract Electromagnetic radiation of the submillimeter (SMM) range is dispersed and absorbed significantly less than infrared (IR) radiation when passing through different objects. That is the reason for the development of an SMM imaging system. In this paper, we discuss the design of an SMM heterodyne imager, based on a matrix of AlGaAs/GaAs heterostructure hot electron bolometer mixers (HEB) with relatively high (about 77 K) operating temperature. The predicted double side band (DSB) noise temperature is about 1000 K and optimal local oscillator (LO) power is about 1 /spl mu/W for such mixers, which seems to be quite prospective for an SMM heterodyne imager.  
  Address Kharkov, Ukraine  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)  
  Notes Approved no  
  Call Number Serial 1487  
Permanent link to this record
 

 
Author Zolotov, P. I.; Vakhtomin, Yu. B.; Divochiy, A. V.; Seleznev, V. A.; Smirnov, K. V. url  isbn
openurl 
  Title Technology development of resonator-based structures for efficiency increasing of NBN detectors of IR single photons Type Journal Article
  Year 2016 Publication Proc. 5th Int. Conf. Photonics and Information Optics Abbreviated Journal (up) Proc. 5th Int. Conf. Photonics and Information Optics  
  Volume Issue Pages 115-116  
  Keywords NbN SSPD  
  Abstract This paper presents a technology of fabrication of NbN superconductive single- photon detectors, using resonator structures. The main results are related to optimization of the process of NbN sputtering over substrate with metallic mirrors and SiO 2 /Si 3 N 4 layers /4 thick. Investigation of the quantum efficiency of fabricated devices at 1.6 K on 1.55 μm showed triple-magnified value compared to standard Si/NbN structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-7262-2215-8 Medium  
  Area Expedition Conference  
  Notes http://fioconf.mephi.ru/files/2015/12/FIO2016-Sbornik.pdf Разработка технологии создания резонаторных структур для увеличения квантовой эффективности NBN детекторов ИК-фотонов Approved no  
  Call Number Serial 1811  
Permanent link to this record
 

 
Author Ekström, H.; Karasik, B.; Kollberg, E.; Yngvesson, K. S. url  openurl
  Title Investigation of a superconducting hot electron mixer Type Conference Article
  Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 5th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 169-188  
  Keywords HEB mixers  
  Abstract Mixing at 20 GHz in niobium superconducting thin film strips in the resistive state is studied. Experiments give evidence that electron-heating is the main cause of the non linear phenomena. The requirements on the mode of operation and on the film parameters for small conversion loss and the possibility of conversion gain are discussed. Measurements indicate a minimum intrinsic conversion loss around 1 dB with a sharp drop for the lowest voltage bias-points, and a DSB mixer noise temperature between 100 and 450 K at 20 GHz. The device output noise temperature at the mixer operating point can be as low as 30-50 K. A simple theory is presented, which is based on the assumption that the small signal resistance is linearly dependent on power. This type of mixer is considered very promising for use in low-noise heterodyne receivers at THz frequencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1642  
Permanent link to this record
 

 
Author Gol'tsman, G.; Jacobsson, S.; Ekstrom, H.; Karasik, B.; Kollberg, E.; Gershenzon, E. url  openurl
  Title Slot-line tapered antenna with NbN hot electron mixer for 300-360 GHz operation Type Conference Article
  Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 5th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 209-213a  
  Keywords NbN HEB mixers  
  Abstract NbN hot-electron mixers combined with slot-line tapered antennas on Si wdnitride membranes had been fabricated. Several strips of 1 gm wide and 5 tan long made from 100 A NbN film are inserted into the slot antenna. IV-curves under local oscillator power in 300-350 GHz frequency range and conversion gain dependencies on intermediate fre- quency in the 0.1-1 GHz range are measured and compared with that for 100 GHz frequency band. Our results show that pumped IV-curves and intermediate frequency bands are different for 100 GHz and 300 GHz frequency ranges. The interpretation exploits the fact that for the lowest radiation frequency the superconducting energy gap is larger than the radiation quantum energy while they are comparable at the higher frequency. Tha results show that such mixers have good perspectives for terahertz receiving technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1643  
Permanent link to this record
 

 
Author 0kunev, 0.; Dzardanov, A.; Ekstrom, H.; Jacobsson, S.; Kollberg, E.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title NbN hot electron waveguide mixer for 100 GHz operation Type Conference Article
  Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 5th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 214-224  
  Keywords waveguide NbN HEB mixers  
  Abstract NbN is a promising superconducting material used to develope hot- electron superconducting mixers with an IF bandwidth over 1 GHz. In the 100 GHz frequency range, the following parameters were obtained for NbN films 50 A thick: the noise temperature of the receiver (DSB) 1000 K; the conversion losses 10 d13, the IF bandwidth 1 GHz; the local oscillator power 1 /LW. An increase of NbN film thickness up to 80-100 A and increase of working temperature up to 7-8 K, and a better mixer matching may allow to broader the IF band up to 3 Gllz, to reduce the conversion losses down to 3-5 dB and the noise tempera- ture down to 200-300 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1644  
Permanent link to this record
 

 
Author Elantev, Andrey I.; Karasik, Boris S. url  openurl
  Title Noise temperature of a superconducting hot-electron mixer Type Conference Article
  Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 5th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 225  
  Keywords HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1645  
Permanent link to this record
 

 
Author Blundell, R.; Kawamura, J. H.; Tong, C. E.; Papa, D. C.; Hunter, T. R.; Gol’tsman, G. N.; Cherednichenko, S. I.; Voronov, B. M.; Gershenzon, E. M. url  doi
isbn  openurl
  Title A hot-electron bolometer mixer receiver for the 680-830 GHz frequency range Type Conference Article
  Year 1998 Publication Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal (up) Proc. 6-th Int. Conf. Terahertz Electron.  
  Volume Issue Pages 18-20  
  Keywords NbN HEB mixers  
  Abstract We describe a heterodyne receiver designed to operate in the partially transparent atmospheric windows centered on 680 and 830 GHz. The receiver incorporates a niobium nitride thin film, cooled to 4.2 K, as the phonon-cooled hot-electron mixer element. The double sideband receiver noise, measured over the frequency range 680-830 GHz, is typically 700-1300 K. The instantaneous output bandwidth of the receiver is 600 MHz. This receiver has recently been used at the SubMillimeter Telescope, jointly operated by the Steward Observatory and the Max Planck Institute for Radioastronomy, for observations of the neutral carbon and CO spectral lines at 810 GHz and at 806 and 691 GHz respectively. Laboratory measurements on a second mixer in the same test receiver have yielded extended high frequency performance to 1 THz.  
  Address Leeds, UK  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-7803-4903-2 Medium  
  Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)  
  Notes Approved no  
  Call Number Serial 1581  
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H.-W.; Schwaab, G.; Gol’tsman, G.; Gershenzon, E. url  doi
openurl 
  Title Performance of NbN phonon-cooled hot-electron bolometric mixer at Terahertz frequencies Type Conference Article
  Year 1998 Publication Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal (up) Proc. 6-th Int. Conf. Terahertz Electron.  
  Volume Issue Pages 149-152  
  Keywords NbN HEB mixers  
  Abstract The performance of a NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixer is investigated in the 0.65-3.12 THz frequency range. The device is made from a 3 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are 0.2/spl times/2 /spl mu/m. The results of the DSB noire temperature are: 1300 K at 650 GHz, 4700 K at 2.5 TBz and 10000 K at 3.12 THz. The RF bandwidth of the receiver is at least 2.5 THz. The amount of LO power absorbed in the bolometer is about 100 nW. The mixer is linear to within 1 dB compression up to the signal level 10 dB below that of the LO. The intrinsic single sideband conversion gain is measured to be -9 dB, the total conversion gain -14 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)  
  Notes Approved no  
  Call Number Serial 1582  
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Hübers, H.-W.; Smirnov, K.; Voronov, B.; Gol'tsman, G. url  isbn
openurl 
  Title Development of terahertz superconducting hot-electron bolometer mixers Type Conference Article
  Year 2003 Publication Proc. 6th European Conf. Appl. Supercond. Abbreviated Journal (up) Proc. 6th European Conf. Appl. Supercond.  
  Volume 181 Issue Pages 2960-2965  
  Keywords NbN HEB mixers  
  Abstract We present recent results of the development of phonon cooled hot-electron bolometric (HEB) mixers for airborne and balloon borne terahertz heterodyne receivers. Three iomportant issues have been addresses: the quality of NbN films the HEB mixers were made from, the spectral properties of the HEB mixers and the local oscillator power required for optical operation. Studies with an atomic force microscope indicate, that the performance of the HEB mixer might have been effected by the microstructure of the NbN film. Antenna gain and noise temperature were investigated at terahertz frequencies for a HEB embedded in either log-spiral or twin-slot feed antenna. Comparison suggests that at frequencies above 3 THz the spiral feed provides better overall performance. At 1.6 THz, a power of 2.5 µW was required from the local oscillator for optimal operation of the HEB mixer.  
  Address Sorrento, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0750309814, 978-0750309813 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1505  
Permanent link to this record
 

 
Author Karasik, B. S.; Elantiev, A. I. url  openurl
  Title Analysis of the noise performance of a hot-electron superconducting bolometer mixer Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 229-246  
  Keywords HEB mixers  
  Abstract A theoretical analysis for the noise temperature of hot–electron superconducting mixer has been presented. Thecontributions of both Johnson noise and electron temperature fluctuations have been evaluated. A set of criteriaensuring low noise performance of the mixer has been stated and a simple analytic expression for the noisetemperature of the mixer device has been suggested. It has been shown that an improvement of the mixer sensitivitydoes not necessarily follow by a decrease of the bandwidth. An SSB noise temperature limit due to the intrinsic noisemechanisms has been estimated to be as low as 40–90 K for a mixer device made from Nb or NbN thin film.Furthermore, the conversion gain bandwidth can be as wide as is allowed by the intrinsic electron temperaturerelaxation time if an appropriate choice of the mixer resistance has been made. The intrinsic mixer noise bandwidthis of 3 GHz for Nb device and of 5 GHz for NbN device. An additional improvement of the theory has been madewhen a distinction between the impedance measured at high intermediate frequency (larger than the mixerbandwidth) and the mixer ohmic resistance has been taken into account.Recently obtained experimental data on Nb and NbNbolometer mixer devices are viewed in connection with thetheoretical predictions.The noise temperature limit has also been specified for the mixer device where an outdiffusion coolingmechanism rather than the electron–phonon energy relaxation determines the mixer bandwidth. A consideration ofthe noise performance of a bolometer mixer made from YBaCuO film utilizing a hot–electron effect has been done.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pasadena, Ca Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 258  
Permanent link to this record
 

 
Author Okunev, 0.; Dzardranov, A.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title Performances of hot—electron superconducting mixer for frequencies less than the gap energy: NbN mixer for 100 GHz operation Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 247-253  
  Keywords NbN HEB mixers  
  Abstract The possibilities to improve the parameters of the 100 GHz NbN HEB superconducting waveguide mixers have been studied. The device consists of a signal strip 1 gm wide by 2 Am long made of 40 A thick NbN film. The best operation point was found at 5 K, where the mixer bandwidth made up 1.5-2 GHz and the total loss diminished down to 8 dB. The critical current density has been increased up to " 40 6 A/cm 2 , the noise temperature of the receiver (DSB) has reduced down to 450 K and the local oscillator power has decreased down to -.4).1 mcV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1625  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B. url  openurl
  Title NbN hot-electron mixer measurements at 200 GHz Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 254-261  
  Keywords NbN HEB mixers  
  Abstract We present noise and gain measurements of resistively driven NbN hot-electron mixers near 200 GHz. The device geometry is chosen so that the dominant cooling process of the hot-electrons is their interaction with the lattice. Except for a single batch, the intermediate frequency cut-off of these mixer elements is – 3 700 MHz, and has shown little variation among other batches of devices. At 100 MHz we measured intrinsic mixer losses as low as —3 dB. We measured the noise temperatures at several intermediate frequencies, and for the best de- vice at 137 MHz with 20 MHz bandwidth, we measured 2000 K; using a low-noise first- stage amplifier at 1.5 GHz with 200 MHz bandwidth, the receiver noise temperature measured 2800 K. We estimate that the noise contribution from the mixer is 500 K and the total losses are —15 dB at 137 MHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1626  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Karasik, B. S.; Svechnikov, S. I.; Gershenzon, E. M.; Ekström, H.; Kollberg E. url  openurl
  Title Noise temperature of NbN hot—electron quasioptical superconducting mixer in 200-700 GHz range Type Abstract
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 268  
  Keywords NbN HEB mixers, noise temperature  
  Abstract The electron heating effect in superconducting films is becoming very attractive for the development of THz range mixers because of the absence of frequency limitations inherent in the bolometric mechanism. However, the evidence for the spectral dependence of the position of optimal operating point has been found recently for NbN thin film devices 1.2 • The effect is presumably attributed to the variation in the absorption of radiation depending on the frequency. Since the resistive state is not spatially uniform the coupling efficiency of the mixer device with radiation can be different for frequencies larger than Zeilh and those smaller than 2Alh (d is the effective superconducting gap in the resistive state). To study the effect more thoroughly we have investigated the noise temperature of quasioptical NbN mixer device with broken hue tapered slot antenna in the frequency range 200-700 GHz. The device consists of several (5-10) parallel strips 1 jim wide and 6-7 tun thick made from NbN film on Si0 2 -Si 3 N 4 -Si membrane. The strips are connected with the gold contacts of the slot-line antenna which serves both as bias and IF leads. We used backward wave oscillators as LO sources and a standard hot/cold load technique for noise temperature measurements. The frequency dependence of noise temperature is mainly determined by two factors: frequency properties of the antenna and frequency dependence of the NbN film impedance. To separate both factors we monitored the frequency dependence of the device responsivity in the detector mode at a higher temperature within the superconducting transition where the impedance of NbN film is close to its normal resistance. In this case the impedance of the device itself is frequency independent. The experimental results will be reported at the Symposium. 1. G. Gollsman, S. Jacobsson, H. EkstrOm, B. Karasik, E. Kollberg, and E. Gershenzon, “Slot-line tapered antenna with NbN hot electron mixer for 300-360 GHz operation,” Proc of the 5th Int. Symp. on Space Terahertz Technology, pp. 209-213a, May 10-12,1994. 2. B.S. Karasik, G.N. Gol i tsman, B.M. Voronov, S.I. Svechnikov, E.M. Gershenzon, H. Ekstrom, S. Jacobsson, E. Kollberg, and K.S. Yngvesson, “Hot electron quasioptical NbN superconducting mixer,” presented at the ASC94, submitted to IEEE Trans. on Appl. Superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1627  
Permanent link to this record
 

 
Author Ekström, H.; Karasik, B.; Kollberg, E.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title 350 GHz NbN hot electron bolometer mixer Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 269-283  
  Keywords NbN HEB mixers  
  Abstract Superconducting NbN hot-electron bolometer (HEB) mixer devices have been fabricated and measured at 350 GHz. The HEB is integrated with a double dipole antenna on an extended crystalline quartz hyper hemispherical substrate lens. Heterodyne measurement gave a -3 dB bandwidth, mainly determined by the electron- phonon interaction time, of about 680 and 1000 MHz for two different films with Tc = 8.5 and 11 K respectively. The measured DSB receiver noise temperature is around 3000 K at 800 MHz IF frequency. The main contribution to the output noise from the device is due to electron temperature fluctuations with the equivalent output noise temperature TFL-100 K. TH, has the same frequency dependence as the IF response. The contribution from Johnson noise is of the order of T. The RF coupling loss is estimated to be = 6 dB. The film with lower Tc, had an estimated intrinsic low-frequency conversion loss = 7 dB, while the other film had a conversion loss as high as 14 dB. The difference in intrinsic conversion loss is explained by less uniform absorption of radiation. Measurements of the small signal impedance shows a transition of the output impedance from the DC differential resistance Rd=dV/dI in the low frequency limit to the DC resistance R 0 =Uoff 0 in the bias point for frequencies above 3 GHz. We judge that the optimum shape of the IV-characteristic is more easily obtained at THz frequencies where the main restriction in performance should come from problems with the RF coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1628  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Schuch, R.; Lutz, C. R.; Jr.; Yngvesson, K. S.; Mueller, E. R.; Waldivian, J.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Hot electron detection and mixing experiments in NbN at 119 micrometer wavelength Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 284-293  
  Keywords NbN HEB mixers, detectors  
  Abstract We have performed preliminary experiments with the goal of demonstrating a Hot Electron Bolometric (HEB) mixer for a 119 micrometer wavelength (2.5 THz). We have chosen a NbN device of size 700 x 350 micrometers. This device can easily be coupled to a laser LO source, which is advantageous for performing a prototype experiment. The relatively large size of the device means that the LO power required is in the mW range; this power can be easily obtained from a THz laser source. We have measured the amount of laser power actually absorbed in the device, and from this have estimated the best optical coupling loss to be about 10 di . We are developing methods for improving the optical coupling further. Preliminary measurements of the response of the device to a chopped black-body have not yet resulted in a measured receiver noise temperature. We expect to be able to complete this measurement in the near future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1629  
Permanent link to this record
 

 
Author Sáysz, Wojciech; Guziewicz, Marek; Bar, Jan; Wegrzecki, Maciej; Grabiec, Piotr; Grodecki, Remigiusz; Wegrzecka, Iwona; Zwiller, Val; Milosnaya, Irina; Voronov, Boris; Gol’tsman, Gregory; Kitaygorsky, Jen; Sobolewski, Roman url  openurl
  Title Superconducting NbN nanostructures for single photon quantum detectors Type Abstract
  Year 2008 Publication Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons Abbreviated Journal (up) Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons  
  Volume Issue Pages 160  
  Keywords SSPD, SNSPD  
  Abstract Practical quantum systems such as quantum communication (QC) or quantum measurement systems require detectors with high speed, high sensitivity, high quantum efficiency (QE), and short deadtimes along with precise timing characteristics and low dark counts. Superconducting single photon detectors (SSPDs) based on ultrathin meander type NbN nanostripes (operated at T=2-5K) are a new and highly promising type of devices fulfilling above requirements. In this paper we present results of the SSPDs nanostructure technological optimization. The base for our detector is thin-film (4nm) NbN layer deposited on 350- P m-thick sapphire substrate The active element of the detector is a meander- nanostructure made of 4-nm-thick and 100-nm-wide NbN stripe, covering 10 u 10 P m 2 area with the filling factor ~0,5. The NbN superconducting films were deposited on sapphire substrates by DC reactive magnetron sputtering whereas the meander element of the detector was patterned by the direct electron-beam lithography followed by reactive-ion etching. To enhance the SSPD efficiency at Ȝ = 1.55 P m, we have performed an approach to increase the absorption of the detector by integrating it with optical resonant cavity. An optical microcavity optimized for absorption of 1.55 P m photons was designed as an one-mirror resonator consisting of a Ȝ/4 dielectric layer and a metallic mirror. The microcavity was deposited on the top of the NbN SSPD meander. The resonator was formed by the dielectric SiO 2 layer and metal mirror made of gold or palladium. Microcavity layers were deposited using a magnetron sputtering system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1409  
Permanent link to this record
 

 
Author Yagubov, P.; Gol'tsman, G.; Voronov, B.; Seidman, L.; Siomash, V.; Cherednichenko, S.; Gershenzon, E. url  openurl
  Title The bandwidth of HEB mixers employing ultrathin NbN films on sapphire substrate Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 290-302  
  Keywords NbN HEB mixers, fabrication process  
  Abstract We report on some unusual features observed during fabrication of ultrathin NbN films with high Tc. The films were used to fabricate HEB mixers, which were evaluated for IF bandwidth measurements at 140 GHz. Ultrathin films were fabricated using reactive dc magnetron sputtering with a discharge current source. Reproducible parameters of the films are assured keeping constant the difference between the discharge voltage in pure argon, and in a gas mixture, for the same current. A maximum bandwidth of 4 GHz at optimal LO and dc bias was obtained for mixer chip based on NbN film 35 A thick with Tc = 11 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Charlottesville, Virginia, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 266  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Golts'man, G.; Gershenzon, E.; Voronov B. url  openurl
  Title Superconductive NbN hot-electron bolometric mixer performance at 250 GHz Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 331-336  
  Keywords NbN HEB mixers  
  Abstract Thin film NbN (<40 A) strips are used as waveguide mixer elements. The electron cooling mechanism for the geometry is the electron-phonon interaction. We report a receiver noise temperature of 750 K at 244 GHz, with / IF = 1.5 GHz, Af= 500 MHz, and Tphysical = 4 K. The instantaneous bandwidth for this mixer is 1.6 GHz. The local oscillator (LO) power is 0.5 1.tW with 3 dB-uncertainty. The mixer is linear to 1 dB up to an input power level 6 dB below the LO power. We report the first detection of a molecular line emission using this class of mixer, and that the receiver noise temperature determined from Y-factor measurements reflects the true heterodyne sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 945  
Permanent link to this record
 

 
Author Yagoubov, P.; Gol'tsman, G.; Voronov, B.; Svechnikov, S.; Cherednichenko, S.; Gershenzon, E.; Belitsky, V.; Ekström, H.; Semenov, A.; Gousev, Yu.; Renk, K. url  openurl
  Title Quasioptical phonon-cooled NbN hot-electron bolometer mixer at THz frequencies Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 303-317  
  Keywords NbN HEB mixers  
  Abstract In our experiments we tested phonon-cooled hot-electron bolometer (HEB) quasioptical mixer based on spiral antenna designed for 0.5-1.2 THz frequency band and fabricated on sapphire, Si-coated sapphire and high resistivity silicon substrates. HEB devices were produced from thin superconducting NbN film 3.5-6 nm thick with the critical temperature of about 11-12 K. For these devices we achieved the receiver noise temperature T R (DSB) = 3000 K in the 500-700 GHz frequency range and an IF bandwidth of 3-4 GHz. Prelimanary measurements at frequencies 1-1.2 THz resulted the receiver noise temperature about 9000 K (DSB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1614  
Permanent link to this record
 

 
Author Trifonov, V. A.; Karasik, B. S.; Zorin, M. A.; Gol'tsman, G. N.; Gershenzon, E. M.; Lindgren, M.; Danerud, M.; Winkler, D. url  openurl
  Title 9.6 μm wavelength mixing in a patterned YBa2Cu3O7-δ thin film Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 337-348  
  Keywords YBCO HTS HEB mixers  
  Abstract Hot-electron bolometric (HEB) mixing of 9.6 gm infrared radiation from two lasers in high-quality YBa2Cu307_3 (YBCO) patterned thin film has been demonstrated. A heterodyne measurement showed an intermediate frequency (IF) bandwidth of 18 GHz, limited by our measurement system. An intrinsic limit of 100 GHz is predicted. Between 0.1 and 1 GHz intermediate frequency, temperature fluctuations with an equivalent output noise temperature Tfl up to -150 K, contributed to the mixer noise while Johnson noise dominated above 1 GHz. The overall conversion loss at 77 K at low intermediate frequencies was measured to be -25 dB, of which 13 dB was due to the coupling loss. The IIEB mixer is very promising for use in heterodyne receivers within the whole infrared range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1615  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.; Mueller, E. R.; Waldman, J.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenco, S. I.; Svechnikov, S. I.; Yagoubov, P. A.; Gershenzon, E. M. url  openurl
  Title Optimization of hot eleciron bolometer mixing efficiency in NbN at 119 micrometer wavelength Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 584-600  
  Keywords NbN HEB mixers  
  Abstract We describe an investigation of a NbN HEB mixer for 2.5 THz. An intrinsic conversion loss of 23 dB has been measured with a two-laser measurement technique. The conversion loss was limited by the LO power available and is expected to decrease to 10 dB or less when sufficient LO power is available. For this initial experiment we used a prototype device which is directly coupled to the laser beams. We present results for a back-short technique that improves the optical coupling to the device and describe our progress for an antenna-coupled device with a smaller dimension. Based on our measured data for conversion loss and device output noise level, we predict that NbN HEB mixers will be capable of achieving DSB receiver noise temperatures of ten times the quantum noise limit in the THz range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1616  
Permanent link to this record
 

 
Author Hübers, Heinz-Wilhelm; Semenov, Alexei; Schubert, Josef; Gol'tsman, Gregory; Voronov, Boris; Gershenzon, Evgeni url  openurl
  Title Performance of the phonon-cooled hot-electron bolometric mixer between 0.7 THz and 5.2 THz Type Conference Article
  Year 2000 Publication Proc. 8-th Int. Conf. on Terahertz Electronics Abbreviated Journal (up) Proc. 8-th Int. Conf. on Terahertz Electronics  
  Volume Issue Pages 117-119  
  Keywords NbN HEB mixers  
  Abstract We report on the phonon cooled NbN hot electron bolometer as mixer in the terahertz frequency range. Its hybrid antenna consists of a hyperhemispheric silicon lens and a logarithmic-spiral feed antenna. Noise temperatures have been measured between 0.7 THz and 5.2 THz. A quarter wavelength layer of Parylene works as antireflection coating for the silicon lens and reduces the noise temperature by about 30. It was found that the antenna pattern at 2.5 THz is determined by the feed antenna and not by the diameter of the lens.  
  Address Darmstadt, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Conference on Terahertz Electronics [8th], Held inDarmstadt, Germany on 28-29 September 2000  
  Notes Approved no  
  Call Number Serial 1553  
Permanent link to this record
 

 
Author Romanov, N. R.; Zolotov, P. I.; Smirnov, K. V. url  isbn
openurl 
  Title Development of disordered ultra-thin superconducting vanadium nitride films Type Conference Article
  Year 2019 Publication Proc. 8th Int. Conf. Photonics and Information Optics Abbreviated Journal (up) Proc. 8th Int. Conf. Photonics and Information Optics  
  Volume Issue Pages 425-426  
  Keywords VN films  
  Abstract We present the results of development and research of superconducting vanadium nitride VN films ~10 nm thick having different level of disorder. It is showed that both silicon substrate temperature T sub in process of magnetron sputtering and total gas pressure P affect superconducting transition temperature of sputtered films and R 300 /R 20 ratio defining their level of disorder. VN films suitable for development of superconducting single-photon detectors on their basis are obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-7262-2536-4 Medium  
  Area Expedition Conference  
  Notes http://fioconf.mephi.ru/files/2018/12/FIO2019-Sbornik.pdf Approved no  
  Call Number Serial 1802  
Permanent link to this record
 

 
Author Moshkova, M. A.; Divochiy, A. V.; Morozov, P. V.; Antipov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V. url  isbn
openurl 
  Title Characterization of topologies of superconducting photon number resolving detectors Type Conference Article
  Year 2019 Publication Proc. 8th Int. Conf. Photonics and Information Optics Abbreviated Journal (up) Proc. 8th Int. Conf. Photonics and Information Optics  
  Volume Issue Pages 465-466  
  Keywords PNR SSPD  
  Abstract Comparative analysis for different topologies of superconducting single-photon detectors with ability to resolve up to 4 photons in a short pulse of IR radiation has been carry out. It was developed the detector with a system detection efficiency of ~ 85 % at λ = 1550 nm. The possibility of using such detector to restore photon statistics of a pulsed radiation source was demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-7262-2536-4 Medium  
  Area Expedition Conference  
  Notes http://fioconf.mephi.ru/files/2018/12/FIO2019-Sbornik.pdf Approved no  
  Call Number Serial 1803  
Permanent link to this record
 

 
Author Cherednichenko, S.; Yagoubov, P.; Il'In, K.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title Large bandwidth of NbN phonon-cooled hot-electron bolometer mixers on sapphire substrates Type Conference Article
  Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 8th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 245-257  
  Keywords NbN HEB mixers, fabrication process  
  Abstract The bandwidth of NbN phonon-cooled hot electron bolometer mixers has been systematically investigated with respect to the film thickness and film quality variation. The films, 2.5 to 10 mm thick, were fabricated on sapphire substrates using DC reactive magnetron sputtering. All devices consisted of several parallel strips, each 1 1.1 wide and 211 long, placed between Ti-Au contact pads. To measure the gain bandwidth we used two identical BWOs operating in the 120-140 GHz frequency range, one functioning as a local oscillator and the other as a signal source. The majority of the measurements were made at an ambient temperature of 4.5 K with optimal LO and DC bias. The maximum 3 dB bandwidth (about 4 GHz) was achieved for the devices made of films which were 2.5-3.5 nm thick, had a high critical temperature, and high critical current density. A theoretical analysis of bandwidth for these mixers based on the two-temperature model gives a good description of the experimental results if one assumes that the electron temperature is equal to the critical temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 276  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.; Cherednichenko, S. url  openurl
  Title Phonon-cooled NbN HEB mixers for submillimeter wavelengths Type Conference Article
  Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 8th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 23-28  
  Keywords waveguide NbN HEB mixers  
  Abstract The noise performance of receivers incorporating NbN phonon-cooled superconducting hot electron bolometric mixers is measured from 200 GHz to 900 GHz. The mixer elements are thin-film (thickness — 4 nm) NbN with —5 to 40 pm area fabricated on crystalline quartz sub- strates. The receiver noise temperature from 200 GHz to 900 GHz demonstrates no unexpected degradation with increasing frequency, being roughly TRx ,; 1-2 K The best receiver noise temperatures are 410 K (DSB) at 430 GHz, 483 K at 636 GHz, and 1150 K at 800 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 275  
Permanent link to this record
 

 
Author Ekström, H.; Kollberg, E.; Yagoubov, P.; Gol'tsman, G.; Gershenzon, E.; Yngvesson, S. url  openurl
  Title Phonon cooled ultra thin NbN hot electron bolometer mixers at 620 GHz Type Conference Article
  Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 8th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 29-35  
  Keywords NbN HEB mixers  
  Abstract We have measured the noise performance and gain bandwidth of 35 A thin NbN hot-electron mixers integrated with spiral antennas on silicon substrate lenses at 620 GHz. A double-sideband receiver noise temperature less than 1300 K has been obtained with a 3 dB bandwidth of GHz. The gain bandwidth is 3.2 GHz. A lower noise temperature of 1100 K has been achieved with an improved set-up. The mixer output noise dominated by thermal fluctuations is about 50-60 K, and the SSB receiver and intrinsic conversion gain is about -18 and -12 dB, respectively. Without mismatch losses and excluding the loss from the beamsplitter, we expect to achieve a receiver noise temperature of less than 700 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1604  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Svechnikov, S. I.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M. url  openurl
  Title NbN hot electron bolometric mixer for 2.5 THz: the phonon cooled version Type Conference Article
  Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 8th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 258-271  
  Keywords NbN HEB mixers  
  Abstract We describe an investigation of a NbN HEB mixer for 2.5 THz. NbN HEBs are phonon-cooled de-. vices which are expected, according to theory, to achieve up to 10 GHz IF conversion gain bandwidth. We have developed an antenna coupled device using a log-periodic antenna and a silicon lens. We have demon- strated that sufficient LO power can be coupled to the device in order to bring it to the optimum mixer oper- ating point. The LO power required is less than 1 microwatts as measured directly at the device. We also describe the impedance characteristics of NbN devices and compare them with theory. The experimental results agree with theory except for the imaginary part of the impedance at very low frequencies as was demonstrated by other groups.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1605  
Permanent link to this record
 

 
Author Goltsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M. url  openurl
  Title Low-noise NbN phonon-cooled hot-electron bolometer mixers for terahertz heterodyne receivers Type Conference Article
  Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal (up) Proc. 9-th WMSCI  
  Volume 9 Issue Pages 154-159  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Institute of Informatics and Systemics Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 547  
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Yang, Z. Q.; Baryshev, A. M.; Barends, R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.; Callaos, N. url  isbn
openurl 
  Title Twin-slot antenna coupled NbN hot electron bolometer mixers for space applications Type Conference Article
  Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal (up) Proc. 9-th WMSCI  
  Volume 9 Issue Pages 148-153  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Institute of Informatics and Systemics Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9806560639, 9789806560635 Medium  
  Area Expedition Conference 9th World Multi-Conference on Systemics, Cybernetics and Informatics  
  Notes Approved no  
  Call Number Serial 1480  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Measured results for NbN phonon-cooled hot electron bolometric mixers at 0.6-0.75 THz, 1.56 THz, and 2.5 THz Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 105-114  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1587  
Permanent link to this record
 

 
Author Kawamura, Jonathan; Blundell, Raymond; Tong, C.-Y. Edward; Papa, D. Cosmo; Hunter, Todd R.; Gol'tsman, Gregory; Cherednichenko, Sergei; Voronov, Boris; Gershenzon, Eugene url  openurl
  Title First light with an 800 GHz phonon-cooled HEB mixer receiver Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 35-43  
  Keywords HEB, mixer, LO power, local oscillator power, saturation effect, dynamic range  
  Abstract Phonon-cooled superconductive hot-electron bolometric (HEB) mixers are incorporated in a waveguide receiver designed to operate near 800 Gliz. The mixer elements are thin-film nio- bium nitride microbridges with dimensions of 4 nm thickness, 0.2 to 0.3 p.m in length and 2 jun in width. At 780 GHz the best receiver noise temperature is 840 K (DSB). The mixer IF bandwidth is 2.0 GHz, the absorbed LO power is —0.1 1.1W. A fixed-tuned version of the re- ceiver was installed at the Submillimeter Telescope Observatory on Mt. Graham, Arizona, to conduct astronomical observations. These observations represent the first time that a receiver incorporating any superconducting HEB mixer has been used to detect a spectral line of celes- tial origin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pasadena, California, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 572  
Permanent link to this record
 

 
Author Svechnikov, S.; Verevkin, A.; Voronov, B.; Menschikov, E.; Gershenzon, E.; Gol'tsman, G. url  openurl
  Title Quasioptical phonon-cooled NbN hot electron bolometer mixers at 0.5-1.1 THz Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 45-51  
  Keywords NbN HEB mixers  
  Abstract The noise performance of a receiver incorporating spiral antenna coupled NbN phonon-cooled superconducting hot electron bolometric mixer is measured from 450 GHz to 1200 GHz. The mixer element is thin (thickness nm) NbN 1.5 pm wide and 0.2 i.um long film fabricated by lift-off e-beam lithography on high-resistive silicon substrate. The noise of the receiver temperature is 1000 K at 800-900 GHz, 1200 K at 950 GHz, and 1600 K at 1.08 THz. The required (absorbed) local-oscillator power is —20 nW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1586  
Permanent link to this record
 

 
Author Gousev, Yu. P.; Olsson, H. K.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title NbN hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 121-129  
  Keywords NbN HEB mixers  
  Abstract We report on noise temperature measurements for a NbN phonon-cooled hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz. Radiation was coupled to the mixer, placed in a vacuum chamber of He cryostat, by means of a planar spiral antenna and a Si immersion lens. A backward-wave oscillator, tunable throughout the spectral range, delivered an output power of few 1.1W that was enough for optimum operation of the mixer. At 4.2 K ambient temperature and 1.025 THz radiation frequency, we obtained a receiver noise temperature of 1550 K despite of using a relatively noisy room-temperature amplifier at the intermediate frequency port. The noise temperature was fairly constant throughout the entire operation range and for intermediate frequencies from 1 GHz to 2 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1588  
Permanent link to this record
 

 
Author Yazoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Lipatov, A.; Svechnikov, S.; Gershenzon, E. url  openurl
  Title Quasioptical NbN phonon-cooled hot electron bolometric mixers with low optimal local oscillator power Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 131-140  
  Keywords NbN HEB mixers  
  Abstract In this paper, the noise perform.ance of NIN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixers is investigated in the 0.55-1.1 THz frequency range. The best results of the DSB noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The water vapor in the signal path causes a significant contribution to the measured noise temperature around 1.1 THz. The required LO power is typically about 60 nW. The frequency response of the spiral antenna+lens system is measured using a Fourier Transform Spectrometer with the HEB operating in a detector mode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1589  
Permanent link to this record
 

 
Author Il'in, K. S.; Cherednichenko, S. I.; Gol'tsman, G. N.; Currie, M.; Sobolewski, R. url  openurl
  Title Comparative study of the bandwidth of phonon-cooled NbN hot-electron bolometers in submillimeter and optical wavelength ranges Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 323-330  
  Keywords NbN HEB mixers  
  Abstract We report the results of the bandwidth measurements of NbN hot-electron bolometers, perfomied in the terahertz frequency domain at 140 GHz and 660 GHz and in time domain in the optical range at the wavelength of 395 nm.. Our studies were done on 3.5-nm-thick NbN films evaporated on sapphire substrates and patterned into ilin-size microbridges. In order to measure the gain bandwidth, we used two identical BWOs (140 or 660 GHz), one functioning as a local oscillator and the other as a signal source. The bandwidth we achieved was 3.5-4 GHz at 4.2 K with the optimal LO and DC biases. Time-domain measurements with a resolution below 300 fs were performed using an electro-optic sampling system, in the temperature range between 4.2 K to 9 K at various values of the bias current and optical power. The obtained response time of the NbN hot-electron bolometer to —100- fs-wide Ti:sapphire laser pulses was about 27 ps, what corresponds to the 5.9 GHz gain bandwidth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1590  
Permanent link to this record
 

 
Author Baeva, E.; Sidorova, M.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title Precise measurement of the thermal conductivity of superconductor Type Conference Article
  Year 2018 Publication Proc. AIP Conf. Abbreviated Journal (up) Proc. AIP Conf.  
  Volume 1936 Issue 1 Pages 020003 (1 to 4)  
  Keywords NbN SSPD, SNSPD  
  Abstract Measuring the thermal properties such as the heat capacity provide information about intrinsic mechanisms operated inside. In general, the ratio between electron and phonon specific heat Ce/Cp shows how the absorbed energy shared between electron and phonon subsystems. In this work we make estimations for amplitude-modulated absorption of THz radiation technique for investigation of the ratio Ce/Cp in superconducting Niobium Nitride (NbN) at T = Tc. Our results indicates that experimentally the frequency of modulation has to be extra large to extract the quantity. We perform a new technique allowed to work at low frequency with accurately measurement of absorbed power.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number doi:10.1063/1.5025441 Serial 1311  
Permanent link to this record
 

 
Author Kovaluyk, V.; Lazarenko, P.; Kozyukhin, S.; An, P.; Prokhodtsov, A.; Goltsman, G.; Sherchenkov, A. url  openurl
  Title Influence of the phase state of Ge2Sb2Te5 thin cover on the parameters of the optical waveguide structures Type Abstract
  Year 2019 Publication Proc. Amorphous and Nanostructured Chalcogenides Abbreviated Journal (up) Proc. Amorphous and Nanostructured Chalcogenides  
  Volume Issue Pages 47-48  
  Keywords optical waveguides  
  Abstract The fast switching time of Ge-Sb-Te thin films between amorphous and crystalline states initiated by laser beam as well as significant change of their optical properties and the preservation of metastable states for tens of years open wide perspectives for the application of these materials to fully optical devices [1], including high-speed optical memory [2]. Here we study optical properties of the Ge2Sb2Te5 (GST225) thin films integrated with on-chip silicon nitride O-ring resonator. The rib waveguide of the resonator was formed the first stage of e-beam lithography and subsequent reactive-ion etching. We used the second stage of e-beam lithography combining with lift-off method for the formation of GST225 active region on the resonator ring surface. The amorphous GST225 thin films were prepared by magnetron sputtering, and were capped by thin silicon oxide on their tops. The length of the GST225 active region varied from 0.1 to 20 μ m. Crystallization of amorphous thin films was carried out at the temperature of 400 °C for 30 minutes. Auger electron spectroscopy and transmission electron microscopy were used for studying composition and structure of investigated GST225thin films, respectively. It was observed that crystallization of amorphous GST225 film lead to a decrease of the optical power, transmitted through the waveguide. Comparison of the optical transmittance of O-ring resonators before and after the GST225 deposition allowed to identify the change in the Q-factor and the wavelength peak shift. This can be explained by the differences of the complex refractive indexes of GST225 thin films in the amorphous and crystalline states. From the measurement data, the GST225 effective refractive index was extracted depending on the ring waveguide width of the resonator for a telecommunication wavelength of 1550 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Technical University of Moldova Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Poster Approved no  
  Call Number Serial 1281  
Permanent link to this record
 

 
Author Kitaygorsky, Jennifer; Komissarov, I.; Jukna, A.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R. url  openurl
  Title Fluctuations in two-dimensional superconducting NbN nanobridges and nanostructures meanders Type Abstract
  Year 2007 Publication Proc. APS March Meeting Abbreviated Journal (up) Proc. APS March Meeting  
  Volume 52 Issue 1 Pages L9.00013  
  Keywords  
  Abstract We have observed fluctuations, manifested as sub-nanosecond to nanosecond transient, millivolt-amplitude voltage pulses, generated in two-dimensional NbN nanobridges, as well as in extended superconducting meander nanostructures, designed for single photon counting. Both nanobridges and nano-stripe meanders were biased at currents close to the critical current and measured in a range of temperatures from 1.5 to 8 K. During the tests, the devices were blocked from all incoming radiation by a metallic enclosure and shielded from any external magnetic fields. We attribute the observed spontaneous voltage pulses to the Kosterlitz-Thouless-type fluctuations, where the high enough applied bias current reduces the binding energy of vortex-antivortex pairs and, subsequently, thermal fluctuations break them apart causing the order parameter to momentarily reduce to zero, which in turn causes a transient voltage pulse. The duration of the voltage pulses depended on the device geometry (with the high-kinetic inductance meander structures having longer, nanosecond, pulses) while their rate was directly related to the biasing current as well as temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1027  
Permanent link to this record
 

 
Author Kitaygorsky, Jennifer; Komissarov, I.; Jukna, A.; Sobolewski, Roman; Minaeva, O.; Kaurova, N.; Korneev, A.; Voronov, B.; Milostnaya, I.; Gol'Tsman, Gregory url  openurl
  Title Nanosecond, transient resistive state in two-dimensional superconducting stripes Type Abstract
  Year 2006 Publication Proc. APS March Meeting Abbreviated Journal (up) Proc. APS March Meeting  
  Volume Issue Pages H38.13  
  Keywords NbN stripes  
  Abstract We have observed, nanosecond-in-duration, transient voltage pulses, generated across two-dimensional (2-D) NbN stripes (width: 100--500 nm; thickness: 3.5--10 nm) of various lengths (1--500 μm), when the wires were completely isolated from the outside world, biased at currents close to the critical current, and kept at temperatures below the mean-field critical temperature Tco. In 2-D superconducting films, at temperatures below the Kosterlitz-Thouless transition, all vortices are bound and the resistance is zero. However, these vortices can get unbound when a large enough transport current is applied. The latter results in a transient resistive state, which manifests itself as spontaneous, 2.5--8-ns-long voltage pulses with the amplitude corresponding to the unbinding potential of a vortex pair. In our 100-nm-wide stripes, we have also observed the formation of phase slip centers (PSCs) at temperatures close to Tco, and a mixture of PSCs and unbound vortex-antivortex pairs at low temperatures.  
  Address Baltimore, MD  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1454  
Permanent link to this record
 

 
Author Bell, Matthew; Sergeev, Andrei; Goltsman, Gregory; Bird, Jonathan; Verevkin, Aleksandr url  openurl
  Title Transition-edge sensors based on superconducting nanowires Type Abstract
  Year 2006 Publication Proc. APS March Meeting Abbreviated Journal (up) Proc. APS March Meeting  
  Volume Issue Pages B38.00001  
  Keywords NbN nanowire TES  
  Abstract We present our experimental study of superconducting NbN nanowire-based sensor. The responsivity of the sensor is strongly affected by the superconducting transition width of the nanostructure, which, in turn, is determined by the phase slip centers (PCSs) dynamics. The fluctuations and noise properties of the sensor are also discussed, as well as the devices' behavior at high magnetic fields. The ultimate performance of the sensor and prospects of the devices will be discussed, as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1455  
Permanent link to this record
 

 
Author Kollberg, Erik L.; Gershenzon, E.; Goltsman, G.; Yngvesson, K. S. url  openurl
  Title Hot electron mixers, the potential competition Type Conference Article
  Year 1992 Publication Proc. ESA Symp. on Photon Detectors for Space Instrumentation Abbreviated Journal (up) Proc. ESA Symp. on Photon Detectors for Space Instrumentation  
  Volume Issue Pages 201-206  
  Keywords HEB mixers  
  Abstract There is an urgent need in radio astronomy for low noise heterodyne receivers for frequencies above about 500 GHz. It is not certain that mixers based on superconducting quasiparticle tunnelling (SIS mixers) may turn out to be the answer to this need. In order to try to find an alternative way for realizing low noise heterodyne receivers for submillimeter waves, so called hot electron bolometric effects for mixing are now being investigated. Two basically different approaches are tried, one based on semiconductors and one on superconductors. Both methods are briefly discussed in this overview paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ESA Symposium on Photon Detectors for Space Instrumentation  
  Notes Approved no  
  Call Number Serial 1667  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Sergeev, A.; Semenov, A. D. doi  openurl
  Title Picosecond response of YBaCuO films to electromagnetic radiation Type Conference Article
  Year 1990 Publication Proc. European Conf. High-Tc Thin Films and Single Crystals Abbreviated Journal (up) Proc. European Conf. High-Tc Thin Films and Single Crystals  
  Volume Issue Pages 457-462  
  Keywords YBCO HTS detectors  
  Abstract Radiation-induced change of the resistance was studied in the resistive state of YBaCuO films. Electron-phonon relaxation time T h was determmed from direct ep measurements and analysis of quasistationary electron heating. Temperature dependence of That TS 40 K was found to – ep be T h.. T'. The resul ts show that ep detectors with the response time of few picosecond at nitrogen temperature can be realized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Gorzkowski, W.; Gutowski, M.; Reich, A.; Szymczak, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference European Conference , Ustroń, Poland , 30 Sept – 4 Oct 1989  
  Notes Approved no  
  Call Number Serial 1695  
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, Manfred; Krocka, Michael; Mair, Ulrich; Smirnov, K.; Gol'tsman, G.; Voronov, B. url  openurl
  Title Terahertz heterodyne receiver with a hot-electron bolometer mixer Type Conference Article
  Year 2002 Publication Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop Abbreviated Journal (up) Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop  
  Volume Issue Pages  
  Keywords NbN HEB mixers  
  Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA)[1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.  
  Address Monterey, CA, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Wold, J.; Davidson, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 4 pages; Unconfirmed but cited in https://kups.ub.uni-koeln.de/1622/1/bedorf.pdf; There is a Program of the Workshop: https://www.yumpu.com/en/document/view/7411055/far-ir-submm-mm-detector-technology-workshop-sofia-usra (there is no title of this article in the Program); There is also identical publication in Proc. ISSTT (Serial: 332, “A broadband terahertz heterodyne receiver with an NbN HEB mixer”). Approved no  
  Call Number Serial 1829  
Permanent link to this record
 

 
Author Kuznetsov, K. A.; Kornienko, V. V.; Vakhtomin, Y. B.; Pentin, I. V.; Smirnov, K. V.; Kitaeva, G. K. url  doi
openurl 
  Title Generation and detection of optical-terahertz biphotons via spontaneous parametric downconversion Type Conference Article
  Year 2018 Publication Proc. ICLO Abbreviated Journal (up) Proc. ICLO  
  Volume Issue Pages 303  
  Keywords NbN HEB applications  
  Abstract We study spontaneous parametric downconversion (SPDC) in the strongly non-degenerate regime when the idler wave hits the terahertz range. By using the hot-electron bolometer, for the first time the SPDC-generated idler-wave photons were directly detected in the terahertz frequency range. Spectrum of corresponding signal photons was measured using standard technique by the CCD camera. Possible applications of correlated optical-terahertz biphotons are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Conference Laser Optics  
  Notes Approved no  
  Call Number Serial 1806  
Permanent link to this record
 

 
Author Cao, Aiqin; Jiang, L.; Chen, S.H.; Antipov, S.V.; Shi, S.C. doi  openurl
  Title IF gain bandwidth of a quasi-optical NbN superconducting HEB mixer Type Conference Article
  Year 2007 Publication Proc. International conference on microwave and millimeter wave technology Abbreviated Journal (up) Proc. ICMMT  
  Volume Issue Pages 1-3  
  Keywords HEB, mixer, gain bandwidth  
  Abstract In this paper, the intermediate frequency (IF) gain bandwidth of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer is investigated at 500 GHz with an IF system incorporating with a frequency down-converting scheme which is able to sweep the IF signal in a frequency range of 0.3-4 GHz. The IF gain bandwidth of the device is measured to be 1.5 GHz when it is biased at a voltage of the minimum noise temperature, and becomes larger when the bias voltage increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Builin Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 575  
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G. url  openurl
  Title NbN hot electron bolometer mixers with superior performance for space applications Type Conference Article
  Year 2004 Publication Proc. Int. workshop on low temp. electronics Abbreviated Journal (up) Proc. Int. workshop on low temp. electronics  
  Volume Issue Pages 11-17  
  Keywords NbN HEB mixers, applications  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Noordwijk Editor Armandillo, E.; Leone, B.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International workshop on low temperature electronics- WOLTE 6 - Noordwijk  
  Notes Approved no  
  Call Number Serial 1496  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Gol’tsman, G. N.; Smirnov, K. url  doi
isbn  openurl
  Title Superconducting quantum detector for astronomy and X-ray spectroscopy Type Conference Article
  Year 2002 Publication Proc. Int. Workshop on Supercond. Nano-Electronics Devices Abbreviated Journal (up) Proc. Int. Workshop on Supercond. Nano-Electronics Devices  
  Volume Issue Pages 201-210  
  Keywords NbN SSPD, SNSPD, SQD, superconducting quantum detectors, X-ray spectroscopy  
  Abstract We propose the novel concept of ultra-sensitive energy-dispersive superconducting quantum detectors prospective for applications in astronomy and X-ray spectroscopy. Depending on the superconducting material and operation conditions, such detector may allow realizing background limited noise equivalent power 10−21 W Hz−1/2 in the terahertz range when exposed to 4-K background radiation or counting of 6-keV photon with almost 10—4 energy resolution. Planar layout and relatively simple technology favor integration of elementary detectors into a detector array.  
  Address Naples, Italy  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Boston, MA Editor Pekola, J.; Ruggiero, B.; Silvestrini, P.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4615-0737-6 Medium  
  Area Expedition Conference International Workshop on Superconducting Nano-Electronics Devices, May 28-June 1, 2001  
  Notes Approved no  
  Call Number semenov2002superconducting Serial 1525  
Permanent link to this record
 

 
Author Tretyakov, I.; Shurakov, A.; Perepelitsa, A.; Kaurova, N.; Svyatodukh, S.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G. url  isbn
openurl 
  Title Silicon room temperature IR detectors coated with Ag2S quantum dots Type Conference Article
  Year 2019 Publication Proc. IWQO Abbreviated Journal (up) Proc. IWQO  
  Volume Issue Pages 369-371  
  Keywords silicon detector, quantum dot, IR, surface states  
  Abstract For decades silicon has been the chief technological semiconducting material of modern microelectronics. Application of silicon detectors in optoelectronic devices are limited to the visible and near infrared ranges, due to their transparency for radiation with a wavelength higher than 1.1 μm. The expansion Si absorption towards longer wave lengths is a considerable interest to optoelectronic applications. In this work we present an elegant and effective solution to this problem using Ag2S quantum dots, creating impurity states in Si to cause sub-band gap photon absorption. The sensitivity of room temperature zero-bias Si_Ag2S detectors, which we obtained is 1011 cmHzW . Given the variety of QDs parameters such as: material, dimensions, our results open a path towards the future study and development of Si detectors for technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-89513-451-1 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1154  
Permanent link to this record
 

 
Author Проходцов, А. И.; Голиков, А. Д.; Ан, П. П.; Ковалюк, В. В.; Гольцман, Г. Н. url  openurl
  Title Влияние покрытия из оксида кремния на эффективность фокусирующего решеточного элемента связи из нитрида кремния Type Conference Article
  Year 2019 Publication Proc. IWQO Abbreviated Journal (up) Proc. IWQO  
  Volume Issue Pages 201-203  
  Keywords integrated optics, silicon nitride, focusing grating coupler  
  Abstract В работе экспериментально изучена зависимость эффективности фокусирующего решеточного элемента связи от периода и фактора заполнения до и после напыления верхнего слоя из оксида кремния. Полученные данные имеют практическое значение при создании перестраиваемых интегрально-оптических устройств на нитриде кремния.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1188 Approved no  
  Call Number Serial 1282  
Permanent link to this record
 

 
Author Елезов, М. С.; Щербатенко, М. Л.; Сыч, Д. В.; Гольцман, Г. Н. url  openurl
  Title Практические особенности работы оптоволоконного квантового приемника Кеннеди Type Conference Article
  Year 2019 Publication Proc. IWQO Abbreviated Journal (up) Proc. IWQO  
  Volume Issue Pages 303-305  
  Keywords Kennedy quantum receiver, fiber, quantum optics, standard quantum limit, superconducting nanowire single-photon detector, coherent detection  
  Abstract Мы рассматриваем практические особенности работы квантового приемника на основе схемы Кеннеди, собранного из стандартных оптоволоконных элементов и сверхпроводникового детектора одиночных фотонов. Приемник разработан для различения двух фазовомодулированных когерентных состояний света на длине волны 1,5 микрона в непрерывном режиме с частотой модуляции 200 КГц и уровнем ошибок различения примерно в два раза ниже стандартного квантового предела.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1288 Approved no  
  Call Number Serial 1283  
Permanent link to this record
 

 
Author Елманов, И. А.; Елманова, А. В.; Голиков, А. Д.; Комракова, С. А.; Каурова, Н. С.; Ковалюк, В. В.; Гольцман, Г. Н. url  openurl
  Title Способ определения параметров резистов для электронной литографии фотонных интегральных схем на платформе нитрида кремния Type Conference Article
  Year 2019 Publication Proc. IWQO Abbreviated Journal (up) Proc. IWQO  
  Volume Issue Pages 306-308  
  Keywords Si3N4, e-beam lithography, EBL  
  Abstract В работе были измерены толщины резистов ZEP 520A и ma-N 2400 для электронно-лучевой литографии, неразрушающим способом, а также подобран рецепт, обеспечивающий высокое отношение скорости травления нитрида кремния по сравнению с резистом. Работа имеет практическое значение для электронной литографии интегрально-оптических устройств и устройств нанофотоники на основе нитрида кремния.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1189 Approved no  
  Call Number Serial 1284  
Permanent link to this record
 

 
Author Елманова, А.; Елманов, И.; Комракова, С.; Голиков, А.; Джавадзадэ, Д.; Воробьёв, В.; Большедворский, С.; Сошенко, В.; Акимов, А.; Ковалюк, В.; Гольцман, Г. url  openurl
  Title Способ интеграции наноалмазов с нанофотонными устройствами из нитрида кремния Type Conference Article
  Year 2019 Publication Proc. IWQO Abbreviated Journal (up) Proc. IWQO  
  Volume Issue Pages 309-311  
  Keywords nanodiamonds, NV-centers  
  Abstract В работе были разработаны оптические структуры из нитрида кремния для дальнейшего размещения на них наноалмазов с NV-центрами, опробованы различные методики нанесения раствора наноалмазов и выбрана оптимальная. Работа имеет практическое значение в области нанофотоники и создании квантово-оптических устройств с однофотонными источниками.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1190 Approved no  
  Call Number Serial 1285  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: